
Statistical Methods for Machine Learning II

c by Xia, Tingfeng

2020 winter term

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

Preface

This document is consist of notes from lectures and the online course notes that I, personally,
find interesting/important. You can find the online course notes on the course website here:
https://probmlcourse.github.io/sta414/

Contents

1 Lecture 2 - Introduction to Probabilistic Models 4
1.1 Overview . 4
1.2 Probabilistic Perspective on ML . 4

1.2.1 (Example) Classification . 4
1.3 Observed vs Unobserved Random Variables . 5

1.3.1 Supervised Dataset . 5
1.3.2 Unsupervised Dataset . 5
1.3.3 Latent Variables . 5

1.4 Operations on Probabilistic Models . 6
1.5 Desiderata of Probabilistic Models . 6

1.5.1 Fully Dependent Factorization (Chain Rule) 6
1.5.2 Assumptions (Independence) . 6

1.6 Likelihood Function . 7
1.7 Maximum Likelihood Estimation . 7
1.8 Sufficient Statistics . 7

1.8.1 Fisher-Neyman Factorization Theorem 8
1.9 Exponential Family . 8

1.9.1 (Example) 1-D Gaussian . 8

2 Lecture 3 - Directed Graphical Models 8
2.1 Decision Theory (Utility Theory) . 8
2.2 Graphical Model Notation . 8

2.2.1 Chain Rule Expansion . 8

1

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://probmlcourse.github.io/sta414/

2.2.2 Graph Representation . 9
2.2.3 Conditional Independence . 10
2.2.4 Plates . 10

2.3 Directed Acyclic Graphical Models (DAGM) 10
2.3.1 Independence Assumption on DAGMs 10
2.3.2 (Example) Markov Chain . 11

2.4 Directed - Separation . 11
2.4.1 (Definition) D - Separation . 11
2.4.2 Float Rules Derivation . 11
2.4.3 The Bayes-Ball Algorithm . 13
2.4.4 Bayes Ball Rules . 13

2.5 Unobserved Variables . 14
2.5.1 Partially Unobserved Variables . 14
2.5.2 Latent Variables . 15
2.5.3 Mixture Models . 15

2.6 Examples . 15
2.6.1 Second-order Markov Chain . 15
2.6.2 Hidden Markov Models (HMMs) . 16

3 Lecture 4 - Exact Inference 16
3.1 Variable Elimination . 16

3.1.1 (Simple Example) Chain . 16
3.2 Sum-Product Inference . 17

3.2.1 SP - Inference in Directed Models . 17
3.2.2 SP - Inference in Undirected Models . 17
3.2.3 (Example) Directed Graph . 17
3.2.4 Complexity of VE . 18

4 Lecture 5 - Message passing, Hidden Markov Models, and Sampling 19
4.1 Message Passing . 19

4.1.1 Belief Propagation: Motivation and Definitions 19
4.1.2 Belief Propagation Algorithm . 19

4.2 Inference in Hidden Markov Models . 19
4.3 The Forward - Backward Algorithm . 20

4.3.1 Forward Filtering Recursion . 21
4.3.2 Backward Filtering Recursion . 21

4.4 Sampling . 21
4.4.1 Ancestral Sampling . 21
4.4.2 Simple Monte Carlo . 22

5 Lecture 7 - Stochastic Variational Inference (SVI/ADVI) 23
5.1 Motivation - Approximating Posterior Inference 23
5.2 The Kullback-Leibler Divergence . 23

5.2.1 Expectation Propagation . 24
5.3 The Evidence Lower BOund (ELBO) . 24

5.3.1 Definition and Equivalence Property . 24

2

5.3.2 Optimization goal of ELBO . 24
5.3.3 Pathwise Gradient . 25

5.4 Tutorial . 25
5.4.1 Derivation Using Jensen’s Inequality . 25
5.4.2 Interpretations of ELBO . 26

6 Lecture 8 - Sampling and Monte Carlo Methods 26
6.1 Motivation: Sampling . 26
6.2 Lattice Discretization . 27
6.3 Importance Sampling . 27
6.4 Rejection Sampling . 29
6.5 Metropolis-Hasting Method: Example of MCMC 30

7 Lecture 9 - Amortized Inference and Variational Auto Encoders 30
7.1 Motivations . 30

7.1.1 Efficient Use of (Accumulative) Partial Evidence 30
7.2 Amortized Inference . 31

7.2.1 Simple Example (Parametrizing Gaussian) 31
7.2.2 Amortized Inference - Algorithmic Procedure 31
7.2.3 Optimizing Model Parameters . 31

7.3 Variational Auto Encoders (VAEs) . 32
7.3.1 Autoencoders: Definition and Problems 32
7.3.2 Problems with Deterministic Autoencoders 32
7.3.3 Variational Auto Encoders . 33
7.3.4 Utilization of Latent Variable Models 33

8 Lecture 10 - Normalizing Flows 33
8.1 The Transformation - Generative and Normalizing Directions 34
8.2 Arbitrary Expressiveness . 34
8.3 Generative Goals . 35
8.4 Learning Flows . 35

8.4.1 Learning Directly and Problems Associated 35
8.4.2 Constructing Tractable Flows - General Idea 36
8.4.3 Element-wise Flow Construction . 36
8.4.4 Affine/Linear Flow Construction . 37

9 Lecture 11 - Generative Adversarial Networks (GANs) 37

3

1 Lecture 2 - Introduction to Probabilistic Models

1.1 Overview

We have a random vector in the form X = (X1, . . . , Xm) which can be either observed
or unobserved. To approach this in a generative way, we make the so called generative
assumption. which is that X ∼ Ptrue(X), i.e. there is some true distribution that is behind
the scene and our data is from such distribution.

Goal Model a parametric joint distribution Pθ(X) by learning the parameters. The learning
here means we want to find a/the “close”/“best” estimation to our parameter θ. In this course
we will investigate the following three problems,

• How to specify the joint, Pθ(X)?

• What does “best”/“close” mean? In some sense we want to find Pθ ≈ Ptrue, however
Ptrue might also be unknown.

• How to find the best θ? In this course we will generally rely on gradient methods, so
∇θ...

1.2 Probabilistic Perspective on ML

With this perspective, we can think about common machine learning tasks differently, where
random variables represent:

• X: (high dimensional) input data

• C: discrete label

• Y : continuous target

If we assume our knowledge of the joint of the above three, i.e. we know P (X,C, Y), then we
can write our familiar tasks in the following way

• Regression :

p(Y |X) =
p(X,Y)

P (X)
=

p(X,Y)∫
p(X,Y)dY

(1.1)

• Classification/Clustering :

p(C|X) =
p(X,C)∑
C′ p(X,C

′)
(1.2)

1.2.1 (Example) Classification

Suppose we have data of the form D = {(x, c)i}i. We assume that they came from a certain
true distribution, i.e. {(x, c)i}i ∼ p(X,C). Then, the ultimate goal of the ML problem is
converted into finding p(C|X). Using Bayes Rule of total probability, we can expand the
distribution of interest into

p(C|X) =
p(X,C)

P (X)
=

p(X,C)∑
C′ p(X,C

′)
(1.3)

4

Output Heuristics After we acquire p(C|X) as above, we are one step away from our goal
of output the actual prediction c∗. There are three ways that we can do this, namely

• MLE Estimate is the most intuitive one, we simply choose

c∗ = arg max
c
p(C = c|X) (1.4)

• Sample Learnt Dist is another approach which produces non-deterministic results,
i.e. we sample c∗ ∼ p(C|X).

• Combined is usually a safe way of doing this. We output

(c∗, p(C = c∗|X)) ⇐⇒ (result,how sure?) (1.5)

As an example, we have a ML algorithm drives a car. In this case, we might want to
make decision only when the machine learning model has a certain level of confidence.

1.3 Observed vs Unobserved Random Variables

1.3.1 Supervised Dataset

{xi, ci}Ni=1 ∼ p(X,C) (1.6)

In such case, the class labels are observed and finding the conditional distribution p(C|X)
satisfies the supervised classification problem.

1.3.2 Unsupervised Dataset

{xi}Ni=1 ∼ p(X,C) (1.7)

Still under the generative assumption, where we assume that there is some underlying distri-
bution for our dataset. Further, we assume that the distribution of data is related to the class
labels for the data points even though the class labels are never observed. A common way
to refer to an unobserved discrete class label is “cluster”. However, in this case, our
final goal of classification is still p(C|X)1.1.

1.3.3 Latent Variables

Further, like clusters, introducing assumptions about unobserved variables is a
powerful modelling tool. We will make use of this by modelling variables which
are never observed in the dataset, called latent or hidden variables. By introducing
and modelling latent variables, we will be able to naturally describe and capture
abstract features of our input data.

1.1Might be helpful to think of Gaussian Mixture Models

5

1.4 Operations on Probabilistic Models

• Generate Data : Sample from the model.

• Estimate Likelihood : When all variables are either observed or marginalized, we
produce the result which is a single real number that describes the ‘probability’ of the
all variables taking on those specific values.

• Inference : Compute the expected value of some variables given others which are either
observed or marginalized.

• Learning : Set the parameters of the joint distribution given some observed data to
maximize the probability of the observed data.

1.5 Desiderata of Probabilistic Models

We have two desires for the joint distribution to learn, namely

• The marginal and conditional distribution can be computed efficiently

• The representation of the joint distribution should be compact. This is especially im-
portant when we are dealing with joint distributions over many variables.

In general, total joint distribution are too large to specify and would require an insane amount
of data to fit even we wanted to. Thus, we need modelling assumptions.

1.5.1 Fully Dependent Factorization (Chain Rule)

Suppose we have sample space defined such that |T | = 2, |W | = 3, and |M | = 4. Then the
total joint distribution could be expanding using the chain rule as (note: not unique)

Pθ(T,W,M) = P (T)P (W |T)P (M |T,W) (1.8)

which requires1.2 |θ| = (2 − 1) + (3 − 1) × 2 + (4 − 1) × 2 × 3 = 23 parameters in total to
specify.

1.5.2 Assumptions (Independence)

Introducing assumptions results in

• a less expressive model

• |θ| (usually, much) smaller

which can be bad sometimes (since the model is less expressive) and is a trade-off that we as
modellers have to deal with.

1.2Here the bars mean “cardinality” rather than vector norm

6

(Example) Fully Independent We assume that T ⊥ W ⊥ M , then by definition we
know, for example, P (W |T) = P (W). Then

Pθ(T,W,M) = P (T)P (W |T)P (M |T,W) (1.9)

= P (T)P (W)P (M) (1.10)

which requires only |θ| = (2− 1) + (3− 1) + (4− 1) = 6 to fit.

1.6 Likelihood Function

For some observed data X, the likelihood describes the likeliness of the data under then
distribution with parameter θ.

L(θ) = p(X|θ) (1.11)

In general, we prefer to deal with the log likelihood function, which is defined as

`(θ;X) = logL(θ) = log p(X|θ) (1.12)

1.7 Maximum Likelihood Estimation

The idea is to find
θ̂MLE := arg max

θ
`(θ;D) (1.13)

In the case of i.i.d, we can re-write as

θ̂MLE = arg max
θ
`(θ;D) (1.14)

= arg max
θ

log
∏
m

p
(
x(m)|θ

)
(1.15)

= arg max
θ

∑
m

log p
(
x(m)|θ

)
(1.16)

1.8 Sufficient Statistics

(Definition) Statistic A statistic is a possibly vector valued deterministic function of a
set of random variables.

(Definition) Sufficient Statistic is a statistic that conveys exactly the same information
about the data generating process that created the data as the entire data itself.1.3 In formal
language, Sufficient Statistic (T (X)) for X could be defined as

T (X(1)) = T (X(2)) =⇒ L(θ;X(1)) = L(θ;X(2)), ∀θ (1.17)

alternatively, we can define it as

P (θ|T (X)) = P (θ|X); i.e. data doesn’t give further info (1.18)

1.3Could also be interpreted as “summarize the data with respect to the likelihood”

7

1.8.1 Fisher-Neyman Factorization Theorem

If the probability function is fθ(x), then T is a sufficient statistic for θ if and only if non-
negative functions g and h can be found such that

P (θ|T (X)) = h(x, T (x))g(T (x), θ) (1.19)

1.9 Exponential Family

Factorizes as

p(x|η) = h(x) exp
{
η′T (x)− g(η)

}
(1.20)

= h(x)g(η) exp
{
η′T (x)

}
(1.21)

1.9.1 (Example) 1-D Gaussian

p(x|θ) = N (x|µ, σ) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
(1.22)

=
1√

2πσ2
exp

(
− 1

2σ2
(x2 − 2xµ+ µ2)

)
(1.23)

=
1√
2πσ︸ ︷︷ ︸
h(x)

exp

(
−µ2

2σ2

)
︸ ︷︷ ︸

g(η)

exp

[µσ2
−1
2σ2

]︸ ︷︷ ︸
η

[
x
x2

]
︸︷︷︸
T (X)

 (1.24)

2 Lecture 3 - Directed Graphical Models

2.1 Decision Theory (Utility Theory)

Let a denote action, and a∗ be the optimal one. Also use s to denote state and V (·) be the Often, it is
very hard to
find a/the
good/best
value function
that quantifies
everything us-
ing a numerical
value.

value function. We have, in general

a∗ = arg min
a
/ arg max

a
Ep(s|a,knowledge) [V (s)]︸ ︷︷ ︸
u(a)

∆
= utility of action a

(2.1)

2.2 Graphical Model Notation

2.2.1 Chain Rule Expansion

Given any joint probability of N random variables, we can expand it as follows

p (x1,...,N) = p (x1) p (x2|x1) p (x3|x2, x1) . . . p (xn|xn−1:1) (2.2)

Formally speaking, in the case of two random variables would simply

p(x, y) = p(x|y)p(y) (2.3)

8

and the general case for N random variables could be written as 2.1

p

(
N⋂
i=1

xi

)
=

N∏
j=1

p

(
xj

∣∣∣∣∣
j−1⋂
k=1

xk

)
(2.4)

2.2.2 Graph Representation

(Example) Grouping Variables Consider the model

p (xi, xπi) = p (xπi) p (xi|xπi) (2.5)

which we can use the following graph to represent:

xπ1 x1

where

• nodes represent random variables

• arrows mean “conditioned on”, e.g. “xi is conditioned on xπi”

Notice that we can always group the variables together into one bigger variable, so in this
example, xπi might represent a group of variables in stead of just one.

(Example) Fully Dependent 6 Nodes The total expansion of p(x1:6) could be repre-
sented as

x1

x2

x3

x4x6

x5

This is the resultant graphical model if we make absolutely no assumption on the indepen-
dence. Notice that such model grows exponentially in complexity with respect to the number
of parameters considered. We say such model “scales poorly”.

2.1Note: when k = 1, p
(
xk| ∩k−1

j=1 xj
)

= p(x1)

9

2.2.3 Conditional Independence

(Definition) Conditional Independence Let X be the set of nodes in our graph (the
random variables of our model), then two sets of variables XA, XB are said to be conditionally
independent given a third set of variables XC if and only if either

p (XA, XB|XC) = p (XA|XC) p (XB|XC) (2.6)

or (#! Important!)

p (XA|XB, XC) = p (XA|XC) (2.7)

⇐⇒ p (XB|XA, XC) = p (XB|XC) (2.8)

and we denote the relation as (XA ⊥ XB|XC)

2.2.4 Plates

In Bayesian methods, we treat parameters as random variables and hence we would like to
include them in out graphical model. However, adding a node for each observation is quite
cumbersome and thus we introduce plates, which denote replication of random variables.

Nested Plates Plates could be nested, in which case their arrows get duplicated also,
according to the rule: draw an arrow from every copy of the source node to every copy of
the destination node.

Crossing Plates Plates can also cross (intersect), in which case the nodes at the intersection
have multiple indices and get duplicated a number of times equal to the product of the
duplication numbers on all the plates containing them.

2.3 Directed Acyclic Graphical Models (DAGM)

A directed acyclic graphical model over N random variables look like

p (x1:N) =
N∏
i

p (xi|xπi) (2.9)

where xi is a random variable and xπi denotes the parents of the node (which could be an
empty set). This notion is more general than the fully dependence model that looked at
above. Notice that here each node is only dependent on its parents rather than all other
nodes. Thus, the complexity of such model reduces to exponential in fan-in of each node,
instead of the total N .

2.3.1 Independence Assumption on DAGMs

Then, we have the independence relationship of2.2 xi ⊥ xAncestor(πi)|xπi which expands into

p (x1,...,6) = p (x1) p (x2|x1) p (x3|x1) p (x4|x2) p (x5|x3) p (x6|x2, x5) (2.10)

with the following respective graph

2.2Requires topological ordering, to be added later.

10

x1

x2

x3

x4x6

x5

As we can see, the introduction of the assumption greatly reduced the complexity of the
model.

2.3.2 (Example) Markov Chain

The following example has independence relationships that satisfies the Markov Property.

p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3)... (2.11)

and could be represented, in graphical model, as

x1 x2 x3 x4 ...

2.4 Directed - Separation

2.4.1 (Definition) D - Separation

Directed-separation is a notion of connectedness in DAGs in which two (sets of) variables may
or may not be connected conditioned on a third (set of) variable(s). D-connection implies
conditional dependence and d-separation implies conditional independence.

2.4.2 Float Rules Derivation

Notation The double circles (or shaded circles) represent the notion of “conditioned-on”.

Chain

X Y Z X Y Z

In this case, we are interested in knowing whether or not

(X ⊥ Z)|Y (2.12)

11

From the arrows between the nodes, we know that

P (X,Y, Z) = P (X)P (Y |X)P (Z|Y) (2.13)

Then, we have

P (X,Z|Y) =
P (X,Y, Z)

P (Y)
(2.14)

=
P (X)P (Y |X)P (Z|Y)

P (Y)
(2.15)

=
P (X,Y)P (Z|Y)

P (Y)
(2.16)

= P (X|Y)P (Z|Y) (2.17)

and this completes the proof. �

Common Clause

Y

X Z

Y

X Z

As previous, we are interested in knowing whether or not (X ⊥ Z)|Y . From the graph, we
can know that

P (X,Y, Z) = P (Y)P (X|Y)P (Z|Y) (2.18)

Then, we have

P (X,Z|Y) =
P (X,Y, Z)

P (Y)
(2.19)

=
P (Y)P (X|Y)P (Z|Y)

P (Y)
(2.20)

= P (X|Y)P (Z|Y) (2.21)

and this completes the proof. �

Explaining Away (Berkson’s Paradox)

X Z

Y

X Z

Y

12

Notice from the graph that we have P (X,Y, Z) = P (X)P (Z)P (Y |X,Z). First, I will prove
that, in this case, (X 6⊥ Z)|Y .

P (Z|X,Y) =
P (X)P (Z)P (Y |X,Z)

P (X)P (Y |X)
(2.22)

=
P (Z)P (Y |X,Z)

P (Y |X)
(2.23)

6= P (Z|Y) (2.24)

For marginal independence, i.e. (X|Z), we want to show that P (X,Z) = P (X)P (Z).

P (X,Z) =
∑
Y ′

P (X,Y ′, Z) (2.25)

=
∑
Y ′

P (X)P (Z)P (Y ′|X,Z) (2.26)

= P (X)P (Z)
∑
Y ′

P (Y ′|X,Z) (2.27)

= P (X)P (Z) (2.28)

�

2.4.3 The Bayes-Ball Algorithm

To check if xA ⊥ xB|xC , we will need

• Shade all nodes that were conditioned on, i.e. all nodes of xC

• Place balls at each node in xA (or xB)

• Let the balls bounce around according to rules that are yet to be states below

– If any of the balls reach any of the nodes in xB from xA (or reach xA from xB)
then we declare xA 6⊥ xB|xC

– Otherwise, xA ⊥ xB|xC

2.4.4 Bayes Ball Rules

Chain

13

Common Cause

Explain Away

Linear

2.5 Unobserved Variables

Certain variables in our models may be unobserved , either some of the time or always, at
training time or at test time. Graphically, we use shading to indicate observation.

2.5.1 Partially Unobserved Variables

2.3 If variables are occasionally unobserved hen they are missing data, e.g., undefined in-
puts, missing class labels, erroneous target values. In this case, we can still model the joint
distribution, but we marginalize the missing values

`(θ;D) =
∑

complete

log p (xc, yc|θ) +
∑

missing

log p (xm|θ) (2.29)

=
∑

complete

log p (xc, yc|θ) +
∑

missing

log
∑
y

p (xm, y|θ) (2.30)

2.3An concrete example would be hospital data, where typically a large proportion of the data is missing.

14

2.5.2 Latent Variables

Above we discussed the case where some data are non-deterministically unobserved. Latent
variables refers to those that never observed. The handling of the latent variables depends
on where it appears in our model,

• If we never condition on it when computing the probability of the variables we do
observe, then we can just forget about it and integrate it out. For example, given y, x
we fit the model

p(z, y|x) = p(z|y)p(y|x,w)p(w) (2.31)

• If z is not a leaf node, marginalizing over it will induce dependencies between its children.
For example, given y, x we can fit the model

p(y|x) =
∑
z

p(y|x, z)p(z) (2.32)

2.5.3 Mixture Models

In this case, we are looking at data that has no input on class information. We can sum the
labels out,

p(x|θ) =
K∑
k=1

p (z = k|θz) p (x|z = k, θk) (2.33)

where bayes rule comes in handy for calculating the posterior (class responsibilities) of the
mixture component given some data, i.e.,

p (z = k|x, θz) =
p (z = k|θz) pk (x|θk)∑
j p (z = j|θz) pj (x|θj)

(2.34)

2.6 Examples

2.6.1 Second-order Markov Chain

Consider the model

p (x1:T) = p (x1, x2) p (x3|x1, x2) p (x4|x2, x3) · · · = p (x1, x2)
T∏
t=3

p (xt|xt−1, xt−2) (2.35)

which has the graphical representation (double circles mean “observed” here)

x1

x2

x3

x4

...

we notice that this model essentially assumes “the present depends on the past only through
the current state as well as the last one.”

15

2.6.2 Hidden Markov Models (HMMs)

HMM is a statistical model in which a system being modelled is assumed to be a Markov
Process2.4 with un-observed states. Here is the graphical model, where double circles mean
“observed” here:

z1 z2 z3 z4 z5 ...

x1 x2 x3 x4 x5

where

• zt are hidden states taking on one of K discrete values

• xt are observed variables taking on values in any space.

The above graph factorizes into

p (X1:T , Z1:T) = p (Z1:T) p (X1:T |Z1:T) = p (Z1)
T∏
t=2

p (Zt|Zt−1)
T∏
t=1

p (Xt|Zt) (2.36)

3 Lecture 4 - Exact Inference

3.1 Variable Elimination

3.1.1 (Simple Example) Chain

The example that we will consider is the simple chain

A→ B → C → D (3.1)

where we want to compute P (D), with no observation for other variables. We have No obser-
vations for
other variables
means that
we have no
‘evidence’ for
other variables.

XF is the set
of variable that
we are inter-
ested in, XE
is evidence,
and XR is the
set of extrane-
ous variables,
i.e. what we
marginalize out

XF = {D}, XE = {}, XR = {A,B,C} (3.2)

The graphical model gives the factorization of

p(A,B,C,D) = p(A)p(B|A)p(C|B)p(D|C) (3.3)

thus, if we want to find p(D) we can marginalize over all other variables, i.e.

p(D) =
∑
A,B,C

p(A,B,C,D) (3.4)

=
∑
C

∑
B

∑
A

p(A)p(B|A)p(C|B)p(D|C) (3.5)

16

If we marginalize the above the näıve way, then it cost exponentially O(kn). Thus, we need
to find a elimination ordering that gives us a smaller runtime complexity. We can reduce
the complexity by first computing terms that appear across the other marginalization sums, Here φ means

factor, an non-
normalized
“pmf”φ(D) =

∑
C

p(D|C)
∑
B

p(C|B)
∑
A

p(A)p(B|A) (3.6)

=
∑
C

p(D|C)
∑
B

p(C|B)φ(B) (3.7)

=
∑
C

p(D|C)φ(C) (3.8)

3.2 Sum-Product Inference

Let X = Z ∪ Y ∧ Z ∩ Y = ∅ be a set of random variables. . Then, to compute P (Y) for a Here Y is the
set that we
want to do in-
ference on and
thus we are
marginalizing
over everything
in Z

directed and undirected model could be achieved by the sum product inference algorithm

how to gener-
alize to undi-
rected graph?

τ(Y) =
∑
z

∏
φ∈Φ

φ (Scope(φ) ∩ Z,Scope(φ) ∩ Y) ∀Y (3.9)

where the scope for each φ simply means the set of all random variables that have appeared
in that specific φ, and Φ denotes the set of all φ’s.

3.2.1 SP - Inference in Directed Models

In a directed model, the Φ is given by the conditional probability distributions for all variables,
i.e.

Φ = {φxi}
N
i=1 = {p (xi| parents (xi))}Ni=1 (3.10)

The resulting term τ(Y) will be automatically normalized.

3.2.2 SP - Inference in Undirected Models

For undirected models, Φ is given by the set of un-normalized potentials, and we must
normalize the resulting τ(Y) by

∑
Y τ(y)

3.2.3 (Example) Directed Graph

We have the following factorization of the joint distribution

p(C,D, I,G, S, L,H, J) = p(C)p(D|C)p(I)p(G|D, I)p(L|G)P (S|I)p(J |S,L)p(H|J,G) (3.11)

and we will need the following potentials

Φ = {φ(C), φ(C,D), φ(I), φ(G,D, I), φ(L,G), φ(S, I), φ(J, S, L), φ(H,J,G)} (3.12)

2.4In continuous time, the Markov Chain model is known as Markov Process

17

consider the problem where we want to infer P (J) with elimination ordering≺{C,D,I,H,G,S,L}.3.1

Then,

p(J) =
∑
L

∑
S

φ(J, L, S)
∑
G

φ(L,G)
∑
H

φ(H,G, J)
∑
I

φ(S, I)φ(I)
∑
D

φ(G,D, I)
∑
C

φ(C)φ(C,D)

(3.13)

= ...
∑
C

φ(C)φ(C,D)︸ ︷︷ ︸
τ(D)

(3.14)

= ...
∑
D

φ(G,D, I)τ(D)︸ ︷︷ ︸
τ(G,I)

(3.15)

= ...
∑
I

φ(S, I)φ(I)τ(G, I)︸ ︷︷ ︸
τ(S,G)

(3.16)

= ... τ(S,G)
∑
H

φ(H,G, J)︸ ︷︷ ︸
τ(S,G)τ(G,J)

// Note that τ(S,G) doesn’t contain H (3.17)

= ...
∑
G

φ(L,G)τ(S,G)τ(G, J)︸ ︷︷ ︸
τ(J,L,S)

(3.18)

= ...
∑
S

φ(J, L, S)τ(J, L, S)︸ ︷︷ ︸
τ(J,L)

(3.19)

= ...
∑
L

τ(J, L)︸ ︷︷ ︸
τ(J)

(3.20)

= τ(J) (3.21)

3.2.4 Complexity of VE

The complexity of VE is
O
(
mkNmax

)
(3.22)

where

• m = |Φ| is the number of initial factors, i.e. the number of terms in the original
factorization of the joint probability (given the graphical model)

• k is the number of states each random variable takes (assumed to be equal here)

• Ni is the number of random variables inside each sum
∑

i at the time of marginalization

3.1Note that what comes first in the ordering is the what we want to sum over in the inner most summation

18

• Nmax , maxiNi is the number of random variables inside the largest sum. (Inner sums
are counted as one term all together)

4 Lecture 5 - Message passing, Hidden Markov Models, and
Sampling

4.1 Message Passing

4.1.1 Belief Propagation: Motivation and Definitions

Our goal is to compute the marginal of every variable in graph p(xi), ∀xi ∈ X. Notice that
in a tree, we have Below, T

means the set
of edges in the
tree

P (X1:n) =
1

Z

∏
k∈{1,...,n}

φ (xk)
∏

(i,j)∈T

φi,j (xi, xj) (4.1)

and thus, if we want to compute P (X1) we can marginalize out all other variables

P (X1) =
∑

x2,...,xn

P (X1:n) =
∑

x2,...,xn

1

Z

∏
k

φ (xk)
∏

(i,j)∈T

φi,j (xi, xj) (4.2)

∝
∑

x2,...,xn

∏
k

φ (xk)
∏

(i,j)∈T

φi,j (xi, xj) (4.3)

Now that we have the goal, we can group what we want to compute into a more structured
representation, where we define message-passing from variable j to i ∈ N(j) as

mj→i (xi) =
∑
xj

φj (xj)φij (xi, xj)
∏

k∈N(j)6=i

mk→j (xj) (4.4)

4.1.2 Belief Propagation Algorithm

1. Choose an root r arbitrarily,

2. Pass messages from leaves to r

3. Pass messages from r to leaves Step 2 and 3
here so that
we will com-
pute all the
mi→j , ∀(i, j),
(j, i) ∈ T , af-
ter which we
can use them
to calculate the
marginals using
formula in step
4

4. Compute

p (xi) ∝ φi (xi)
∏

j∈N (i)

mj→i (xi) ,∀i (4.5)

Notice that the
idea is that we
want to calcu-
late all of the
marginals

4.2 Inference in Hidden Markov Models

There are the following four kinds of inference that we can do on a HMM, namely

• Filtering: Compute the belief state p (zt|x1:t) online. Notice that we call this infer-
ence operation filtering because this produces a result smoother than simply computing
p(zt|xt).

19

• Smoothing: Compute p (zt|x1:T) offline. Notice that this computation happens after
all x1:T observations have been collected and hence is offline.4.1

Definition in
KPM is differ-
ent from course
note• Fixed lag smoothing: Compute p (zt−`|x1:t), where ` > 0 is called the lag. Essentially,

we want to do inference on the hidden state zα and we wait until we observe all of x1:α+`

before we carry out the computation.

• Prediction: In this case, we want to compute p (zt+h|x1:t) for some h > 0. (h is called
the prediction horizon) Let’s first take a look at the example where h = 2, then

p(zt+2|x1:t) =
∑
zt+1

∑
zt

p(zt, zt+1, zt+2|x1:t) (4.6)

=
∑
zt+1

∑
zt

p(zt|x1:t)p(zt+1|zt,x1:t)p(zt+2|zt+1, zt,x1:t) (4.7)

=
∑
zt+1

∑
zt

p (zt+2|zt+1) p (zt+1|zt) p (zt|x1:t) (4.8)

where the last step of simplification could be easily justified using Bayes Ball rules.
Above, we computed the prediction about the future hidden states, and it can be con-
verted into prediction about the future observations using

p (xt+h|x1:t) =
∑
zt+h

p (xt+h|zt+h) p (zt+h|x1:t) (4.9)

which is called Posterior Predictive Density.

4.3 The Forward - Backward Algorithm

Suppose that we want to find p(zt|x1:T),∀t, then it can be broken down into two pieces

• Forward Filtering: Compute p (zt, x1:t) ∀t, which effectively is the probability of
the hidden state zt given all past observations, up to including xt.

• Backward Filtering: Compute p (x1+t:T |zt) ∀t, which computes the probability of
all future observations from xt+1 up to including xT given the current hidden state, i.e.
zt.

Then, the complete smoothing p(zt|x1:T) could be computed as This is called
Latent se-
quence given
observations
in HMM in
the course
notes

p (zt|x1:T) = p (x1:T) p (zt, x1:T) (4.10)

∝ p (zt, x1:T) (4.11)

= p (zt, x1:t) p (xt+1:T |zt, x1:t) (4.12)

= p (zt, x1:t) p (xt+1:T |zt) // By Bayes Ball (4.13)

= (Forward Recursion)(Backward Recursion) (4.14)

4.1A very good intuitive example from KPM is that we have a detective investigating a crime scene, and as we
gather more observation, the prediction that we make tends to be more and more certain and less ‘stochastic’.

20

4.3.1 Forward Filtering Recursion

αt(zt) = p (zt, x1:t) =
∑
zt−1

p (zt−1, zt, x1:t) (4.15)

=
∑
zt−1

p (xt|zt−1, zt, x1:t−1) p (zt|zt−1, x1:t−1) p (zt−1, x1:t−1)︸ ︷︷ ︸
=αt−1(zt−1)

(4.16)

=⇒ αt (zt) = p (xt|zt)
∑
zt−1

p (zt|zt−1)αt−1 (zt−1) (4.17)

Notice that our forward recursion contains our emission, p(xt|zt) and transition p(zt|zt−1).
The base case of the recursion could be unwinded into

α1 (z1) = p (z1, x1) = p (z1) p (x1|z1) (4.18)

4.3.2 Backward Filtering Recursion

p (xt+1:T |zt) =
∑
zt+1

p (zt+1, xt+1:T |zt) (4.19)

=
∑
zt+1

p (xt+2:T |zt+1, zt, xt+1) p (xt+1|zt+1, zt) p (zt+1|zt) (4.20)

=⇒ βt (zt) =
∑
zt+1

p (xt+2:T |zt+1)︸ ︷︷ ︸
=βt+1(zt+1)

p (xt+1|zt+1) p (zt+1|zt) (4.21)

and hence if we recurse the above relationship, we will unwind to the base case

β1 (z1) = p (x3:T |z2) p (x2|z2) p (z2|z1) (4.22)

4.4 Sampling
The word sam-
ple here refers
to a single re-
alization from
a distribution
rather than a
set.

The goal is to,

• Generate sample
{
x(r)

}R
r=1

from a probability distribution p(x), and/or

• Estimate expectations of functions f(x) under some distribution p(x), usually we want
to estimate moments for a distribution

E = E
x∼p(x)

[f(x)] =

∫
f(x)p(x)dx (4.23)

4.4.1 Ancestral Sampling

Generating marginal samples If you are only interested in sampling a particular set of
nodes, you can simply sample from all the nodes jointly, then ignore the nodes you don’t need.

21

Generating conditional samples If you want to sample conditional on a node with no
parents, that’s also easy - you can simple do ancestral sampling starting from the nodes you
have.

(#! Important:) However, to sample from a DAG conditional on leaf nodes is hard in the
same way that inference is hard in general. E.g. sampling the unknown key in a crypto-system
given the cypher-text but not knowing the plaintext. Finding ways to do this approximately
is what a lot of the rest of the course will be about.

4.4.2 Simple Monte Carlo

(Definition) - Simple MC Given
{
x(r)

}R
r=1
∼ p(x), we want to estimate the expectation

E
x∼p(x)

[f(x)].

E = E
x∼p(x)

[f(x)] ≈ 1

R

R∑
r=1

f
(
x(r)

)
= Ê (4.24)

Unbiasedness of MC

E
x∼p

(
{x(i)}R

r=1

)[Ê] = E

[
1

R

R∑
r=1

f
(
x(r)

)]
(4.25)

=
1

R

R∑
r=1

E
[
f
(
x(r)

)]
(4.26)

=
1

R

R∑
r=1

E
x∼p(x)

[f(x)] (4.27)

=
R

R
E

x∼p(x)
[f(x)] (4.28)

= E (4.29)

�

Variance of MC

var[Ê] = var

[
1

R

R∑
r=1

f
(
x(r)

)]
(4.30)

=
1

R2
var

[
R∑
r=1

f
(
x(r)

)]
(4.31)

=
1

R2

R∑
r=1

var
[
f
(
x(r)

)]
(4.32)

=
1

R
var [f(x)] (4.33)

22

We notice that the accuracy of MC estimates only depends on the variance of f , not on the
dimension of x. Also, we the number of samples, R, increases, the variance Ê will decrease
at a rate proportional to 1

R . �

5 Lecture 7 - Stochastic Variational Inference (SVI/ADVI)

5.1 Motivation - Approximating Posterior Inference

Notice that if we want to calculate the exact posterior distribution, for example,

p(z|x) =
p(x|z)
p(x)

=
p(x, z)p(z)∫
p(x, z)dz

(5.1)

the bottom integral over all possible states soon becomes intractable, making the computation
of the entire posterior distribution intractable. Hence, instead, we will approximate the
posterior inference with variational methods. Generally speaking, it works as follows

1. We introduce a family of distributions, with variational parameters φ, denoted as qφ.

2. We want to encode a “distance metric” between p(z|x) and qφ(z).

3. Try to minimize the proposed “distance metric”.

There are a few things to note

• First, as we will soon see, we use a measure of closeness that is not a distance metric.
Also, using näıve distance metric could fail spectacularly (arbitrarily bad examples can
be found if we use MSE).

• This formulation turns the Bayesian Inference into an optimization problem. If enough
parts of the model is differentiable and could be well-approximated with Monte Carlo,
then we can use gradient based optimization methods to solve this problem scalably.

5.2 The Kullback-Leibler Divergence

Suppose qφ denotes a family of distributions with its own variational parameters φ, and p
is some distribution. Then, the Kullback-Leibler divergence is defined as

DKL (qφ(z|x)‖p(z|x)) =

∫
qφ(z|x) log

qφ(z|x)

p(z|x)
dz (5.2)

= E
z∼qφ

[
log

qφ(z|x)

p(z|x)

]
(5.3)

Properties of KL Divergence

1. DKL(qφ||p) ≥ 0, non-negativeness

2. DKL(qφ||p) = 0 ⇐⇒ qφ = p

3. DKL(qφ||p) 6= DKL(p||qφ), i.e. KL Divergence is not a metric distance.

23

5.2.1 Expectation Propagation

If we try to reverse the arguments, it leads to a different kind of variational inference that is
called “expectation propagation”. Typically, this leads to an algorithm that is more compu-
tationally expensive.

5.3 The Evidence Lower BOund (ELBO)

5.3.1 Definition and Equivalence Property

We cannot minimize the KL divergence exactly, thus we introduce a function, ELBO, and try DKL(qφ||p)
is intractable
because it con-
tains p(z|x),
which is in-
tractable.

to minimize that. Notice that ELBO is equal to the actual KL divergence up to a constant.

DKL (qφ(z|x)‖p(z|x)) = E
z∼qφ

log
qφ(z|x)

p(z|x)
(5.4)

= E
z∼qφ

[
log

(
qφ(z|x) · p(x)

p(z, x)

)]
(5.5)

= E
z∼qφ

log
qφ(z|x)

p(z, x)
+ E
z∼qφ

log p(x) (5.6)

= −L(φ;x) + log p(x) (5.7)

where L(φ;x) = − E
z∼qφ

log
qφ(z|x)
p(z,x) is defined as the ELBO. If we re-arrange what we have above,

log p(x) = L(φ;x) +DKL (qφ(z|x)‖p(z|x)) (5.8)

and we notice that DKL (qφ(z|x)‖p(z|x)) ≥ 0, it then follows that

L(φ;x) ≤ log p(x) (5.9)

Hence, to minimize the KL divergence we need to maximize the ELBO, and they are equiva-
lent.

5.3.2 Optimization goal of ELBO

We have, by definition of ELBO, that

L(φ;x) = − E
z∼qφ

log
qφ(z|x)

p(x, z)
(5.10)

= E
z∼qφ

[log p(x, z)− log qφ(z|x)] (5.11)

Recall, that our goal is to use gradient based methods to optimize this objective, meaning
that we have to somehow compute, estimate to be precise in this case, the gradient of ELBO
L(φ;x)

∇φL(φ) = ∇φEz∼qφ(z|x) [log p(x, z)− log qφ(z|x)] (5.12)

and we know from a previous lecture that one can get an unbiased estimator of any expectation
as long as we can sample from the distribution and evaluate the function, using simple Monte
Carlo.

24

5.3.3 Pathwise Gradient

Above, we saw that the objective is the gradient over an expectation and we now would like
to make it an expectation over gradient. In general, such swapping is not allowed and we
can only do so if the distribution we’re taking the expectation over does not depend on the
parameter, i.e. φ. Our goal is now to factor our the randomness of from q, and put it into a
parameterless, fixed source of noice p(ε). Formally, we need to find function T (φ, ε) such that

ε ∼ p(ε)
z = T (φ, ε)

}
=⇒ z ∼ qφ(z) (5.13)

We usually start with p(ε) being uniform or normal. Indeed it is not always easy to find these
functions5.1 and as a easy concrete example, we know

ε ∼ N (ε|0, 1)

z = σε+ µ

}
=⇒ z ∼ N (z|µ, σ) (5.14)

Then, by applying the trick we know,

∇φL(φ) = ∇φEz∼qφ(z|x) [log p(x, z)− log qφ(z|x)] (5.15)

= ∇φEε∼p(ε) [log p(x, T (φ, ε))− log qφ(T (φ, ε)|x)] (5.16)

= Eε∼p(ε)∇φ [log p(x, T (φ, ε))− log qφ(T (φ, ε)|x)] (5.17)

5.4 Tutorial

5.4.1 Derivation Using Jensen’s Inequality

Recall that by when Jensen’s inequality is applied to probability distributions, we know that
when f is concave,

f(E[X]) ≥ E[f(X)] (5.18)

Then, for the log probability of the observations,

log p(x) = log

∫
p(x, z)dz (5.19)

= log

∫
p(x, z)

qφ(z|x)

qφ(z|x)
dz (5.20)

= logEz∼qφ
p(x, z)

qφ(z|x)
(5.21)

where we apply Jensen’s Inequality

=⇒ E
z∼qφ

p(x, z)

qφ(z|x)
≥ E

z∼qφ
log

p(x, z)

qφ(z|x)
(5.22)

= − E
z∼qφ

log
qφ(z|x)

p(x, z)
(5.23)

= L(φ;x) (5.24)
5.1http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

25

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

5.4.2 Interpretations of ELBO

For the ELBO defined as

ELBO , L(φ;x) = − E
z∼qθ

log
qφ(z|x)

p(x, z)
(5.25)

we have

1. The most general interpretation is just breaking up the logarithm. We have

L(φ;x) = − E
z∼qφ

log
qφ(z|x)

p(x, z)
(5.26)

= E
z∼qφ

log
p(x, z)

qφ(z|x)
(5.27)

= E
z∼qφ

log
p(z)p(x|z)
qφ(z|x)

(5.28)

= E
z∼qφ

[log p(x|z) + log p(z)− log qφ(z|x)] (5.29)

2. We can try to write this using entropy as

L(φ;x) = E
z∼qφ

[log p(x|z) + log p(z)]H (qφ(z|x)) (5.30)

3. We can frame ELBO as a trade off

L(φ;x) = E
z∼qφ

[log p(x|z)]︸ ︷︷ ︸
(†)

−DKL (qφ(z|x)‖p(z))︸ ︷︷ ︸
(‡)

(5.31)

• (†) is “reconstruction likelihood”, i.e. how probable is x given z, which encourages
the model to choose the distribution which best reconstructs the data.

• (‡) acts as regularization, enforcing the idea that our parametrization shouldn’t
move us too far from the true distribution.

6 Lecture 8 - Sampling and Monte Carlo Methods

6.1 Motivation: Sampling

Note: In this section, we refer to a “sample” as a single realization x that is from a probability
distribution p(x).6.1

Problems to be solved Monte Carlo methods are computational techniques that make
use of random numbers, it aims to solve one or both of the following problems

1. To generate samples
{x(r)}Rr=1 ∼ p(x) (6.1)

2. and to estimate expectations of functions (φ(x)) under the distribution of p(x), i.e.,

Φ = E
x∼p(x)

[φ(x)] =

∫
φ(x)p(x)dx (6.2)

6.1This is different from the normal sense of sample, which means one batch of sample from a distribution.

26

Sampling p(x) is like hornets’ nest To sample from

p(x) =
p̃(x)

Z
(6.3)

there are two main complications even if we know how to evaluate p̃(x)

1. We don’t typically know the normalizing constant, Z.

2. Even if we did know Z, the problem of drawing samples from p(x) is still a chanlenging
one, especially in high-dimensional spaces, because there is no obvious way to sample
from p without enumerating most or all of the possible states. Should this be

p̃ ??

Note: There
are only a
handful of dis-
tribution, for
example gaus-
sian distribu-
tion, that we
can easily sam-
ple from in a
high dimen-
sional space.

6.2 Lattice Discretization

Imagine that we wish to draw samples from the density p(x) = p̃(x)
Z , then what we can do

is discretize the variable x and sample from the discrete probability distribution over a finite
set of uniformly spaced points S = {xi}i. Then for xi ∈ S, we evaluate p̃(xi) after which we
can compute the normalizer

Z =
∑
i

p̃i(xi) (6.4)

and

pi =
p̃i
Z

(6.5)

The main problem with this method, however, comes from the accuracy and cost of eval-
uating at lattice. If we want to sample D uniformly spaced points in one dimension and the
system has N dimensions in total. Then, the the complexity is asymptotically O(DN) which
grows exponentially as dimension grows and soon become intractable.

6.3 Importance Sampling

Note: Importance Sampling doesn’t help us solve the problem of generating samples from
p(x), rather it is a method that helps us estimate expectation of a function φ(x), i.e. problem
2.

Assumptions

1. To do importance sampling, we still need to assume that we can evaluate p(x) (density
that we wish to draw samples from) within a multiplicative constant. To be precise, we
can evaluate a function p̃(x) such that

p(x) = p̃(x)/Z (6.6)

2. We further assume that we have a simpler density, q(x) from which it is easy to sample
from, i.e., x ∼ q(x) and easy to evaluate, i.e., tildeq(x)

q(x) =
q̃(x)

Zq
(6.7)

where the density q(x) is referred to as the sampler density.

27

Sampling Procedure In importance sampling, we generate in total R samples from q(x),

i.e.
{
x(r)

}R
r=1
∼ q(x). If these points were samples from p(x) then we could estimate Φ by

Φ = E
x∼p(x)

[φ(x)] ≈ 1

R

R∑
r=1

φ
(
x(r)

)
= Φ̂ (6.8)

i.e., we could use a Simple Monte Carlo Estimator. The problem is that these sample
are from q rather than p which can be completely unrelated densities. To solve this over-
represented/under-represented problem, we can take into account that we are sampling from
a different distribution by introducing weights, (essentially corrections)

w̃r =
p̃
(
x(r)

)
q̃
(
x(r)

) (6.9)

Finally, we re-write our estimator under q, i.e.

Φ =

∫
φ(x)p(x)dx (6.10)

=

∫
φ(x)

p(x)

q(x)
q(x)dx (6.11)

≈ 1

R

R∑
r=1

φ(x(r))
p
(
x(r)

)
q
(
x(r)

) (6.12)

=
Zq
Zp

1

R

R∑
r=1

φ(x(r)) · p̃(x
(r))

q̃(x(r))
(6.13)

=
Zq
Zp

1

R

R∑
r=1

φ(x(r)) · w̃r since wr =
w̃r∑R
r=1 w̃r

(6.14)

=
1
R

∑R
r=1 φ(x(r)) · w̃r
1
R

∑R
r=1 w̃r

since
Zp
Zq

=
1

R

R∑
r=1

w̃r (6.15)

=
1

R

R∑
r=1

φ(x(r)) · wr (6.16)

= Φ̂iw (6.17)

The estimator Φ̂iw is biased, but is consistent.

Pitfalls As it is easy to see, if we choose q to be some short tailed distribution, we might not
get a good coverage for samples on p, and thus making the estimation not accurate. Notice
that we want to support the entire real line with this method6.2 and hence we cannot use
a näıve uniform over a certain range, and using uniform over the entire real line will cause
uniform distribution pdf to be infinitely small everywhere.

6.2Or otherwise this will just be uniform sampling. Indeed, importance sampling is a generalization of uniform
sampling.

28

Remedy As a way to (semi-) solve the above pitfall, we can choose q to be a heavy-tailed
distribution, for example Cauchy. Of course, the best of all solution is to find a q that looks
like p, but this is in a lot of cases an un achievable goal.

6.4 Rejection Sampling

In rejection sampling we assume again a one-dimensional density p(x) = p̃(x)/Z that is too
complicated a function for us to be able to sample from it directly. We assume that we have
a simpler proposal density q(x) which we can evaluate (within a multiplicative factor Zq, as
before), and from which we can generate samples. We further assume that we know the value
of a constant c such that

cq̃(x) > p̃(x) for some c constant , ∀x (6.18)

It is somewhat important to note that in rejection sampling we care only about the proportion,
and we need a q, or q̃ actually, that “covers” p, or p̃ actually. This means that we don’t care,
and thus don’t need to know the normalizing constant to perform the sampling procedure.
Näıvely, we can just scale q to a huge q̃, and as long as it covers p̃, we are in a good shape.

Sampling Procedure The procedure works as follows

1. Generate two random numbers, the first x is such that x ∼ q(x), and the second u is
generated such that u ∼ Unif [0, cq̃(x)]

2. Evaluate p̃(x) and accept or reject the sample x by comparing the value of u with the
value of p̃(x), to be more specific

• If u > p̃(x), then we reject x,

• otherwise we accept x, effectively adding x to our set of samples. (value of u
is discarded, and in the next iteration u will be sampled again from, possibly, a
different uniform distribution.)

Pitfalls

• Rejection sampling works the best if we are able to find q that is a good approximation
to p. If q is very different from p then, for cq to exceed p everywhere, c will almost
always necessarily be large. This will cause us a very high rejection ratio, and making
the algorithm super inefficient.

• In high-dimensional space, the problem is even worse and it is very likely that the
requirement that cq̃ > p̃ will force c to be so huge that acceptances will be very rare
indeed.

• Besides, finding such a value of c may be difficult too, since in many problems we know
neither where the modes of p̃ are located nor how high they are.

• In general, c grows exponentially with the dimensionality N , so the acceptance rate is
expected to be exponentially small in N , since

acceptance rate =
area under p̃

area under cq̃
=

1

Z
(6.19)

vas ist das?

29

6.5 Metropolis-Hasting Method: Example of MCMC

The proposed importance sampling and rejection sampling work well only if the proposal
density q(x) is similar to p(x). In general, in a high dimensional case, such q is very hard to
find. In Metropolis-Hasting, in contrast to importance and rejection sampling methods, it is
not necessary for q(x′|x(t)) to lock similar to p(x) in order for the algorithm to be useful. The
density q(x′|x(t)) might be a simple distribution such as a gaussian centred at x(t), but can in
general be any fixed density from which we can draw samples.

Sampling Procedure

• A tentative new state x′ is generated from the proposal density q(x′|x(t)), then we
compute

a =
p̃ (x′) q

(
x(t)|x′

)
p̃
(
x(t)
)
q
(
x′|x(t)

) (6.20)

• If a ≥ 1, then the new state is accepted.

• Otherwise, the new state is accepted with probability a. Then, we perform update as
follows,

x(t+1) ← accepted ? x′ : x(t) (6.21)

Note on Difference Notice that in rejection sampling, rejected points are discarded and

have no influence on the list of samples x
(r)
r that we collected. Here, a rejection causes the

current state to be written again onto the list.

Convergence and MCMC Metropolis-Hastings converges to p(x) for any q
(
x′|x(t)

)
≥

0 ∀x′, x(t) as t→∞. That is, out list of samples is such that

{x(r)}Rr=1 → p(x) (6.22)

The Metropolis-Hastings method is an example of a Markov Chain Monte Carlo method. In
contrast to rejection sampling, where the accepted points are independent samples from the
desired distribution, MCMC methods involve a Markov process in which a sequence of states
is generated, each sample x(t) having a probability distribution that depends on the previous
value, x(t−1). Since successive samples are dependent, the Markov chain may have to run for a
considerable time in order to generate samples that are effectively independent samples from
p.

7 Lecture 9 - Amortized Inference and Variational Auto En-
coders

7.1 Motivations

7.1.1 Efficient Use of (Accumulative) Partial Evidence

With enough experience, doctors, plumbers, detectives, etc. can very quickly tell what is
going on and what they still need more information about, if they’ve seen enough similar

30

situations. Hence, perhaps we could somehow train a neural network to look at the data for
a person xi, and then output an approximate posterior qφi (zi|xi)

7.2 Amortized Inference

Here “amortized” essentially means to spread out over time. Previously, we do SVI from
scratch every time we see a new datapoint. Now, instead, we will gradually learn a function
that can look at the data for a person xi, and then output an approximate posterior qφ (zi|xi).
This is known as a recognition model, instead of a separate φi for each data example, we
will just have a single global φ that specifies the parameter of the recognition model. Because
the relationship between data and posteriors is complex and hard to specify by hand, we will
do this through a neural net. (we make the neural net learn the function!)

7.2.1 Simple Example (Parametrizing Gaussian)

We have seen one way to specify a probability distribution given an input with neural networks
in assignment 2: we can simply have a network take in xi, and output the mean and variance
vector for a Gaussian, parametrized as The graphical

model for such
model speci-
fication has φ
outside of the
plate, which
means we only
have one global
φ to update
and optimize.

qφ (zi|xi) = N (zi|µφ (xi) ,Σφ (xi)) (7.1)

7.2.2 Amortized Inference - Algorithmic Procedure

1. Sample a datapoint

2. compute parameters of approximate posterior (recognition)

3. compute gradient of Monte Carlo estimate of ELBO with respect to φ, i.e. ∇φ
∼MC
ELBO

4. update according to gradient descent

Then, when we want to make predictions about a new datapoint, we can use out fast recog-
nition model if we want. Of course, we might also want to stop and do something slower but
more accurate, for example like per-sample SVI, and/or MCMC.

7.2.3 Optimizing Model Parameters

Now that pθ(x) depends on parameters θ, then the ELBO is a function of both φ and θ. We
can optimize them together, still, using the re-parametrize trick we saw earlier.

∇θ,φL(φ) = ∇θ,φEz∼qφ(z|x) [log pθ(x, z)− log qφ(z|x)] (7.2)

= Eε∼p(ε)∇θ,φ [log pθ(x, T (φ, ε))− log qφ(T (φ, ε)|x)] (7.3)

This allows us to jointly fit the model parameters and the recognition network, by subsampling
training examples and using simple Monte Carlo with gradient descent optimizers. Such
formulation is referred to as a variational auto encoder, VAE (See Figure 7.1 for layout of
architecture).

31

x

µz|x Σz|x

z ⇀ z|x ∼ N(µz|x,Σz|x)

µx|z Σx|z

x̂ ⇀ x|z ∼ N(µx|z,Σx|z)

qφ(z|x) [Encoder Net]

pθ(x|z) [Decoder Net]]

Figure 7.1: Variational Autoencoder Architecture

7.3 Variational Auto Encoders (VAEs)

7.3.1 Autoencoders: Definition and Problems

An autoencoder takes an input x, and encodes it into a code vector z7.1, after which the code
vector z is decoded into x̂ that is “similar” to x, our original data. Essentially, what we want
to learn is two mappings, namely the encoder g(x)→ z and the decoder f(z)→ x̂. In general,
g and f could be arbitrarily complex, and thus we model them neural nets. The optimization
goal of such problem is to minimize the reconstruction error, i.e.

J = reconstruction error(x, x̂) (7.4)

Unsupervised Nature of Autoencoders Notice that here the cost defined in equation 7.4
doesn’t rely on any explicit label input. Rather, it is a form of unsupervised learning, where
the learning goal is to learn the mappings to reconstruct the inputs, i.e. x̃ = f ◦ g(x) u x.

7.3.2 Problems with Deterministic Autoencoders

Proximity in data space doesn’t mean proximity in feature space The codes that
we learn by the model is deterministic, i.e.

g (x1) = z1 ⇒ f (z1) = x̃1

g (x2) = z2 ⇒ f (z2) = x̃2
(7.5)

but proximity in feature space is not enforced for inputs in close proximity in data space, i.e.

z1 ≈ z2 6 =⇒ x1 ≈ x2 (7.6)

7.1Notice that for autoencoders to actually “encode” the inputs, we necessarily have to choose the dimension
of z so that it forms a bottleneck. If we allow z to have the same (or even larger) dimensionally with/than x
and x̂, then likely the model will learn two identity mappings!

32

If the space has regions where no data gets encoded to, and you sample/generate a variation
from there, the decoder will generate an unrealistic output, because the decoder has no idea
how to deal with that region of the latent space. During training, it never saw encoded vectors
coming from that region of latent space

Adding Noise By Hand is Hard We said that we wish to embed x’s into a lower dimen-
sion space, and code it as z. However, in practice it is very hard to determine what the low
dimension z should be. Similar to this,

1. We can add noise to data before encoding, after which we try to reconstruct the original
data. But how much noise?

2. We can add noise to the latent variable, code, z after encoding, after which we try to
reconstruct the original data. Again, how much noise should we add?

7.3.3 Variational Auto Encoders

In an hope to address the problems above, we introduce stochasticity into out model: even for
the same input, while the mean and standard deviations remain the same, the actual encoding
will somewhat vary on every single pass simply due to sampling. Figure 7.1 illustrates the
architecture of a variational autoencoder.

VAE Solves Problems in Section 7.3.2, WHY? The VAE generation model learns to
reconstruct its inputs not only from the encoded points but also from the area around them.
This allows the generation model to generate new data by sampling from an “area/volume”
instead of only being able to generate already seen data corresponding to the particular fixed
encoded points.

7.3.4 Utilization of Latent Variable Models

The question is: once we have obtained the model, what do we do with it?
If a latent variable model has a compact prior and vector valued code z’s, we can

1. Sample new data to check the model,

2. Encode (sample from the approximate posterior) of two data points, and interpolate
between them in the latent space, then decode along the path

3. Learn a function to predict some property of the examples from the low-dimensional z
space instead of directly rom x. (semi-supervised learning, essentially use unsupervised
learning to cleanup the data, and to learn a “better” representation.)

8 Lecture 10 - Normalizing Flows

Normalizing Flows, just like VAEs (Section 7.3) and GANs (Section 9), is a generative mod-
elling method.

33

Definition A normalizing flow is a learnt transformation from a simple distribution (base8.1)
to a complex distribution (target). The goal is to make the complex distribution look like our
data. The learnt transformation is a composition of a sequence of mappings that are

• invertible, and

• differentiable

Let’s now discuss this idea more formally and explain why we would need the mappings to
be invertible and differentiable.

More Formal Objective Suppose that you have a random variable RD 3 Z ∼ pZ at hand.
The distribution pZ is called a base distribution, which has to satisfy the following

• known,

• tractable to sample, and

• tractable to evaluate density pZ(·)

A typical candidate for the base distribution would be a simple gaussian. The target distri-
bution RD 3 X ∼ pX is a complex distribution transformed from pZ in a tractable way.

8.1 The Transformation - Generative and Normalizing Directions

Generative Direction is the direction where we compute X = f(Z), where f is (1) invert-
ible and (2) differentiable with Jacobian

∂f(Z) =
df

dZ

∣∣∣∣
Z=Z

(8.1)

Normalizing Direction is the reverse of the above operation, i.e.

Z = g(X) = f−1(X) (8.2)

where g is (1) trivially invertible8.2 and (2) differentiable with Jacobian

∂g(X) =
dg

dX

∣∣∣∣
X=X

(8.3)

8.2 Arbitrary Expressiveness

It has been shown that if f , the generative direction mapping, is arbitrarily expressive, then
pZ can be transformed into any pX .

8.1Although we call this simple distribution a base distribution, we should really think of it as a gaussian.
(Aside: this is where the name of “normalizing” comes from.)

8.2since it is defined as inverse of f

34

8.3 Generative Goals

• Sampling/Generating: should be easy to do, since Z ∼ pZ is by design easy to
sample from, and from there we can compute the tractable transformation X = f(Z).

• Evaluating Density: suppose that we have X ∼ pdata and then we know Z = g(X).
Our goal is to find evaluations of pX(·). The näıve pitfall is summarized below. In
general, we have

pX(X) = pZ(g(X)) |∂g(X)| (8.4)

and this is called the change of variables formula for R.V.s

Pitfall in Evaluating Density in Generative Goals The pitfall is that we might näıvely
think

PX(X)
?
= pZ(g(X)) (8.5)

Suppose that Z ∼ Unif[0, 1], and X = f(Z) = 2Z. Then, X ∼ Unif[0, 2]. If we follow the
näıve idea above, we will get

pX(X = 2)
?
= pZ(2Z = 2) = pZ(Z = 1) = 1 (8.6)

but this must not be the case! Since X ∼ Unif[0, 2] and thus pX(X = 2) = 1/2 6= 1.
Why did this happen? This is because the mapping also alters the “lateral volume” of
the random variable, expanding the original 1 into 2. (It might also help to think that the
mapping is communicating two spaces with different densities, Unif[0, 1] is more dense than
Unif[0, 2].) To account for this, we must take into consider the change in volume, which is
equal to

|∂f(X)| = det
df

dX

∣∣∣∣
X=2

=
1

2
(8.7)

where the general form of the formula is presented in Equation 8.4.

8.4 Learning Flows

8.4.1 Learning Directly and Problems Associated

To learn the flows, we use maximum likelihood, i.e.

θ∗ = arg min
θ

EX [− log pX(X|θ)] (8.8)

= arg min
θ

EX

− log pZ(g(X))− log det [∂g(X)]︸ ︷︷ ︸
(†)

 (8.9)

where we expect the (†) Jacobian determinant term to be tractable. However, in the gen-
eral case, the determinant of a arbitrary MD×D(R) matrix, and hence the Jacobian de-
terminant of interest is order of O(D3), which would be too slow and intractable to be
inside a training loop. In Section 8.2, we saw that if we permit f to be arbitrarily ex-
pressive, then pZ can be transformed into any pX . The challenge lies within the fact that
constructing arbitrary bijections is difficult, and this is where Normalizing Flows is to the res-
cue! We can think of it this way: Normalizing Flows ≡ Transformations that have Jacobian
determinant tractable such that

35

• it is easy to compute |∂f(Z)|, and

• it is tractable to invert |∂f(g(X))|−1 = |∂g(x)|

8.4.2 Constructing Tractable Flows - General Idea

To do so, we will use the property that the composition of flows is itself a flow. To be more
precise, suppose that

f = fN ◦ fN−1 ◦ · · · ◦ f1 ◦ f0 (8.10)

has inverse
g = g0 ◦ g1 ◦ · · · ◦ gN−1 ◦ gN (8.11)

with Jacobian Determinant

|∂g(X)| =
n∏
i=0

|∂gi(X)| (8.12)

As a consequence,

log pX(X) = log pZ(g(X)) +
N∑
i=1

log |∂gi(Xi)| (8.13)

where Xi = gi+1 ◦ · · · ◦ gN (X) and in particular XN = X.

8.4.3 Element-wise Flow Construction

The first method that we propose is element-wise operation of f . Suppose that we have

X =
[
x1 x2 · · ·xD

]> ∈ RD (8.14)

then we construct the mapping as

f(X) =
[
f1(x1) f2(x2) · · · fD(xD)

]>
(8.15)

Using such construction, our Jacobian will be diagonal, i.e.

∂f = diag
[
∂f1(x1) ∂f2(x2) · · · ∂fD(xD)

]>
(8.16)

and thus the determinant computation is simply

det ∂f =
∏
i

∂fi(xi) (8.17)

which is easy to compute. This method comes with a cost that it can not model any de-
pendence between dimensions of the data, which might be too restrictive considering that we
want to model complex data such as image.

36

8.4.4 Affine/Linear Flow Construction

This method uses f of the format

f(X) = AX + b (8.18)

and the normalizing direction would be

g(Z) = A−1(Z − b) (8.19)

The Jacobian in this case could be expressed in terms of A, to be more explicit, we have

∂f = A and ∂g = A−1 (8.20)

and we notice that the determinant computation is still expensive unless we restrict A:

• Diagonal A: then this is just the element-wise construction we saw in Section 8.4.3,

• Triangular A: then the determinant computation cost is O(D) and is much cheaper
than the general case. 8.3

9 Lecture 11 - Generative Adversarial Networks (GANs)

8.3In the case that the base distribution is a gaussian of D dimensions, then this construction just describes
a multi-variate gaussian distribution with covariance matrix A.

37

	Lecture 2 - Introduction to Probabilistic Models
	Overview
	Probabilistic Perspective on ML
	(Example) Classification

	Observed vs Unobserved Random Variables
	Supervised Dataset
	Unsupervised Dataset
	Latent Variables

	Operations on Probabilistic Models
	Desiderata of Probabilistic Models
	Fully Dependent Factorization (Chain Rule)
	Assumptions (Independence)

	Likelihood Function
	Maximum Likelihood Estimation
	Sufficient Statistics
	Fisher-Neyman Factorization Theorem

	Exponential Family
	(Example) 1-D Gaussian

	Lecture 3 - Directed Graphical Models
	Decision Theory (Utility Theory)
	Graphical Model Notation
	Chain Rule Expansion
	Graph Representation
	Conditional Independence
	Plates

	Directed Acyclic Graphical Models (DAGM)
	Independence Assumption on DAGMs
	(Example) Markov Chain

	Directed - Separation
	(Definition) D - Separation
	Float Rules Derivation
	The Bayes-Ball Algorithm
	Bayes Ball Rules

	Unobserved Variables
	Partially Unobserved Variables
	Latent Variables
	Mixture Models

	Examples
	Second-order Markov Chain
	Hidden Markov Models (HMMs)

	Lecture 4 - Exact Inference
	Variable Elimination
	(Simple Example) Chain

	Sum-Product Inference
	SP - Inference in Directed Models
	SP - Inference in Undirected Models
	(Example) Directed Graph
	Complexity of VE

	Lecture 5 - Message passing, Hidden Markov Models, and Sampling
	Message Passing
	Belief Propagation: Motivation and Definitions
	Belief Propagation Algorithm

	Inference in Hidden Markov Models
	The Forward - Backward Algorithm
	Forward Filtering Recursion
	Backward Filtering Recursion

	Sampling
	Ancestral Sampling
	Simple Monte Carlo

	Lecture 7 - Stochastic Variational Inference (SVI/ADVI)
	Motivation - Approximating Posterior Inference
	The Kullback-Leibler Divergence
	Expectation Propagation

	The Evidence Lower BOund (ELBO)
	Definition and Equivalence Property
	Optimization goal of ELBO
	Pathwise Gradient

	Tutorial
	Derivation Using Jensen's Inequality
	Interpretations of ELBO

	Lecture 8 - Sampling and Monte Carlo Methods
	Motivation: Sampling
	Lattice Discretization
	Importance Sampling
	Rejection Sampling
	Metropolis-Hasting Method: Example of MCMC

	Lecture 9 - Amortized Inference and Variational Auto Encoders
	Motivations
	Efficient Use of (Accumulative) Partial Evidence

	Amortized Inference
	Simple Example (Parametrizing Gaussian)
	Amortized Inference - Algorithmic Procedure
	Optimizing Model Parameters

	Variational Auto Encoders (VAEs)
	Autoencoders: Definition and Problems
	Problems with Deterministic Autoencoders
	Variational Auto Encoders
	Utilization of Latent Variable Models

	Lecture 10 - Normalizing Flows
	The Transformation - Generative and Normalizing Directions
	Arbitrary Expressiveness
	Generative Goals
	Learning Flows
	Learning Directly and Problems Associated
	Constructing Tractable Flows - General Idea
	Element-wise Flow Construction
	Affine/Linear Flow Construction

	Lecture 11 - Generative Adversarial Networks (GANs)

