
Neural Net and Deep Learning

c by Xia, Tingfeng

Thursday 13th February, 2020

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

Note

These notes are based Prof. Roger Grosse’s lecture notes as well as Prof. Jimmy Ba’s
lecture slides with varying level of specificity for different chapters and section. The course
website is available at https://csc413-2020.github.io/

Contents

1 Optimization 3
1.1 Prerequisites . 3
1.2 Determining Curvature . 3

1.2.1 Definite-ness . 4
1.3 Convexity . 4

1.3.1 Convex Sets . 4
1.3.2 Convex Functions . 4
1.3.3 Convexity Characterization with Hessian 5
1.3.4 Convexity Composition Properties 5
1.3.5 Convexity for Linear Models . 5
1.3.6 Non-Convexity of Networks . 5

1.4 Nuisance-ness of Cost Surface . 6
1.4.1 Saddle Point . 6
1.4.2 Plateaux . 7
1.4.3 Ill-Conditioned Curvature . 7

1.5 Alternative Gradient Descent . 9
1.5.1 Momentum Gradient Descent . 9
1.5.2 Stochastic Gradient Descent . 10

1

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://csc413-2020.github.io/

1.5.3 Minibatch SGD . 10
1.5.4 SGD Learning Rate . 11

1.6 Debugging Optimization . 12

2 Convolutional Neural Net and Image Classification 12
2.1 Motivations for Convolution Layer . 12
2.2 The Convolution Operator . 12

2.2.1 1-D Signal Processing . 12
2.2.2 2-D Convolution . 13
2.2.3 Properties of Convolution . 13

2.3 Canonical Kernels . 13
2.3.1 Blurring Kernel . 13
2.3.2 Sharpening Kernel . 13
2.3.3 Edge Detector Kernel . 13
2.3.4 Vertical Edge Detector Kernel . 14

2.4 Convolutional Networks . 14
2.4.1 Pooling Layer . 14
2.4.2 Non-linearity in Convolutional Layers 14
2.4.3 Equivariance and Invariance . 14
2.4.4 Channels in Convolution Layers . 15

2.5 Size of Convolutional Neural Nets . 15
2.5.1 Rule of thumb on size . 16

2.6 Supervised Pre-training and Transfer Learning 16

References 18

2

1 Optimization

1.1 Prerequisites

Clairaut’s Theorem states that second order derivatives are such that

∂2J
∂θi∂θj

=
∂2J
∂θj∂θi

(1.1)

The Hessian Matrix is a symmetric matrix (due to Clairaut’s Theorem) defined as

H = ∇2J =


∂2J
∂θ2

1

∂2J
∂θ1∂θ2

· · · ∂2J
∂θ1∂D

∂2J
∂θ2∂θ1

∂2J
∂θ2

2
· · · ∂2J

∂θ2∂θD
...

...
. . .

...
∂2J

∂θD∂θ1
∂2J

∂θD∂θ2
· · · ∂2J

∂θ2
D

 (1.2)

Second-Order Taylor Approximation Locally, a function can be approximated by
its second order Taylor approximation. We have, for θ that is sufficiently close to θ0

J (θ) ≈ J (θ0) +∇J (θ0)
> (θ − θ0)︸ ︷︷ ︸

1st order

+
1

2
(θ − θ0)>H (θ0) (θ − θ0)︸ ︷︷ ︸

quadratic

(1.3)

Notice that if θ is a critical point, then the gradient would be zero. In such case, the
approximation will be

J (θ) ≈ J (θ0) +
1

2
(θ − θ0)>H (θ0) (θ − θ0) (1.4)

Spectral Decomposition Since the Hessian matrix is symmetric, we know that it is
spectral decompose-able, that is Notice that

orthogonal
matrices are
necessarily in-
vertible, with
transpose and
inverse equal to
each other.

H = QΛQ> = QΛQ−1 (1.5)

where Q is the (orthogonal) matrix where columns are the eigenvectors and Λ is the
diagonal matrix with eigenvalues on diagonal.

1.2 Determining Curvature

Often, we refer to the hessian matrix H as the curvature of a function. Suppose that we
are moving along a line defined by θ+ tv for some vector v. According to the second order
Taylor Approximation, we have

J (θ + tv) ≈ J (θ) + t∇J (θ)>v +
t2

2
v>H(θ)v (1.6)

3

Thus, in the case where v>Hv > 0, the cost function curves up, i.e. has positive curva-
ture where as in the case v>Hv < 0, it has a negative curvature.

1.2.1 Definite-ness

• A matrix A is positive definite if v>Av > 0,∀v 6= 0.

• We say it is positive semidefinite if v>Av ≥ 0,∀v 6= 0.

• Equivalently, matrix is positive definite if and only if all its eigenvalues are positive,
and is positive semidefinite iff all its eigenvalues are non-negative. I will now show
the case (one direction) for positive definite-ness.
Proof: Let v 6= 0 ∈ Rn, then we know

v>Av = v>QΛQ>v = (†) (1.7)

Now, if we define z = v>Q, we have

(†) = zΛz> =

z1...
zn


λ1 . . .

λn

 [z1 . . . zn
]

=
∑
i

λiz
2
i (1.8)

Since v 6= 0, we know z = Q>v 6= 0, we know that (†) must be positive and this
concludes the proof. �

• For any critical point θ∗, if H(θ∗) exists and is positive definite, then θ∗ is a local
minimum. In näıve words,

all directions
curve upwards.

1.3 Convexity

1.3.1 Convex Sets

Recall that we say set S is convex if any x0,x1 ∈ S, it holds that

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1 (1.9)

1.3.2 Convex Functions

We say that a function f is convex if for any x0,x1 it holds that

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1) for 0 ≤ λ ≤ 1 (1.10)

4

1.3.3 Convexity Characterization with Hessian

If J is twice differentiable, then we can use a equivalent characterization in terms of the
Hessian matrix H

• A twice diff-able function is convex iff its Hessian is positive semidefinite everywhere
the function is defined.

• In the case of univariate function, where the Hessian would be essentially 1 by 1, we
say it is convex iff its second derivative is non-negative everywhere. Possibly add

proof for
convexity of
squared error,
logistic CE,
and softmax
CE.

1.3.4 Convexity Composition Properties

• The composition of two convex functions is convex.

• If f is a non-decreasing univariate function and g is a convex function, then f ◦ g is
convex.

1.3.5 Convexity for Linear Models

For a linear model, have the hypothesis z = w>x + b is a linear function of w and b. Now,
if the loss is convex as a function of z, then it is convex as a function of w and b. Thus,
linear regression, logistic regression, and softmax regression are clearly convex. (by directly
applying the rules in the Convexity Composition Properties section above.)

1.3.6 Non-Convexity of Networks

Clearly, we want the cost function of interest to be convex, since if that is the case then
there will be no spurious local minima, meaning that any local minimum will also be a
global minimum. In such case, learning is very convenient since gradient based algorithms
can just go downhill all the way. Unfortunately, training a network with hidden units
cannot be convex due to permutation symmetries – we can re-permute the hidden units
in a way that preserves the function computed by the network. An example from slides[1]
gives a good intuition of this matter.

5

Multilayer Neural Net Non-Convex Argument

• By definition, if a (cost) function J is convex, then for any set of points θ1, . . . ,θN
in its domain, we know

J (λ1θ1 + · · ·+ λNθN) ≤ λ1J (θ1)+· · ·+λNJ (θN) for λi ≥ 0,
∑
i

λi = 1 (1.11)

• Due to permutation symmetry, there are K! (where K is the number of hidden units
in a given hidden layer) permutations of the hidden units in a given layer which all
compute the same function.

• Suppose that we average the parameters for all K! permutations, then we get a
degenerate network where all the hidden units are identical (i.e. the network learnt
nothing using these identical weights).

• Under the assumption that the cost function was convex, this solution would have to
be better than the original one (i.e. the one before we average out all the weights in
hidden units) and this leads to a contradiction.1.1 −→←−Thus training a multilayer
neural nets is non-convex. �

1.4 Nuisance-ness of Cost Surface

In this sub-section, we will discuss different non-nice things that can happen to a neural
net’s optimization surface.

1.4.1 Saddle Point

A saddle point is a point if

• ∇J (θ) = 0, and

• H(θ) has some positive and some negative eigenvalues, i.e. some directions with
positive curvature and some with negative curvature.

This could be troublesome since

• If we are exactly on the saddle point, then we are stuck - gradient descent won’t get
us any further.

• In such case, if we inspect the cost, we would judge that the algorithm has converged.
However the solution acquired could be far from optimal.

We can tackle this problem by perturbing the current weight solution slightly in the weight
space so that the weight could start moving again. It is important that we don’t initialize
all of the weights to zero, we should break the symmetry by using small random values.

1.1Remark: Generally, it is safe to say that a network that has leant absolutely nothing would have a
much higher cost than a network that, at least, converged to a local minimum

6

1.4.2 Plateaux

Plateaux happen more than we think they do, here are some examples that very common

• 0-1 loss

• hard threshold activations

• logistic activations and least square

Saturated Unit is when we are in the flat region of the activation function. In the case
of logistic non-linearity (y = 1/(1 + e−x)), when we have very large or very small x’s the
gradient would be very close to zero and thus the weights update will get stuck (or be
extremely slow).

Dead Unit describes an even more extreme case where the gradient is exactly zero. For
example, the negative half of the ReLU activation.

1.4.3 Ill-Conditioned Curvature

1.2 Below is a typical example[1] of a Ill-conditioned curvature

As we can see from the gradient updates shown in the level set
graph, the solution that we get at each iteration bounces back and
forth in the high curvature directions and makes very minimal progress
in the low curvature direction.

We can characterize such curvature by noticing that the hessian H would have some large
positive eigenvalues and some eigenvalues close to zero, corresponding to high-curvature
and low-curvature directions respectively.

1.2This is very common in neural net training.

7

Gradient Descent Dynamics Consider a quadratic objective (which is convex)

J (θ) =
1

2
θ>Aθ where A is +-ive semi definite (1.12)

then the gradient descent updates would be

θk+1 ← θk − α∇J (θk) (1.13)

= θk − αAθk (1.14)

= (I− αA)θk (1.15)

=⇒ θk = (I− αA)kθ0 (1.16)

Let A = Q ∧Q> be the spectral decomposition of A, then

(I− αA)kθ0 =
(
I− αQΛQ>

)k
θ0 (1.17)

=
[
Q(I− αΛ)Q>

]k
θ0 (1.18)

= Q(I− αΛ)kQ>θ0 Q is orthonormal, thus Q>Q = I (1.19)

= Q(I− αΛ)kQ−1θ0 (1.20)

In Q basis, each coordinate gets multiplied by (1− αλi)k where λi’s denote eigenvalues of
A. Hence,

• If 0 < αλi ≤ 1: decays to zero at a rate that depends on αλi

• If 1 < αλi ≤ 2: oscillations will happen

• If αλi > 2: then the gradient updates diverges. (unstable)

The result is that we will need to set our learning rate such that

α <
2

λmax
whereλmax , max

i
λi (1.21)

to prevent instability (divergence). Notice that the goal here is to prevent divergence rather
than preventing oscillations, this is why we have the 2 on the numerator. We can bound
the rate of convergence in another direction,

αλi <
2λi
λmax

(1.22)

We call λmax/λmin as condition number of A. The larger the condition number, the
slower the convergence of gradient, vice versa. Notice that λmax/λmin is large when the
difference between the largest smallest eigenvalue is large, i.e. the curvatures have a large
difference and this is trouble-some for gradient decent updates.

8

Normalization In the case that we have ravine-like cost surfaces, gradient updates could
have a lot of bouncing around. Even more annoyingly, gradient descent updates will
calculate a larger update along the direction with steeper gradient, which in the case of
ravine will almost certainly cause the gradient updates to overshoot. To overcome this,
we introduce normalization, i.e. centring inputs to zero mean and unit variance. This is
especially necessary when we have mixed units in inputs. The normalization we apply is

x̃j =
xj − µj
σj

(1.23)

Notice that if we want to normalize all the outputs of all the layers (including hidden
layers) then we can’t just normalize the output to have a mean of zero. This is due to the
fact that our activations are (usually) non-zero centred, for example logistic non-linearity.

• The first trick that we can use is to replace logistic non-linearity with tanh which is
also a sigmoid function, but ranges from −1to1 and thus have a zero centre.

• A recent method called batch normalization explicitly centres each hidden activa-
tion. In practice, it often speeds up training by 1.5 to 2 times!

1.5 Alternative Gradient Descent

1.5.1 Momentum Gradient Descent

To deal with ill-conditioned curvatures, we want to introduce a notion of “history” through
“acceleration accumulated along the way” in our gradient descent updates. The updates
are

p← µp− α∂θJ (1.24)

θ ← θ + p (1.25)

where α is the usually learning rate, and µ is called a damping parameter and should be
some value less than 1 (typically 0.99 or 0.9). Intuitively, this is the “history decay rate”
and if we have µ = 1 then since we have no decay of energy through time, by conservation
of energy the updates will never settle down. (which is bad, we don’t want this)

• In the high curvature directions, the gradients cancel each other out, so momentum
dampens the oscillations,

• In the low curvature directions, the gradient point in the same direction, allowing
the parameters to “pick up speed”.

9

• #! Important: If you increase µ, you should lower α to compensate. Here is a
demonstration for the case where gradient is constant. In such case,

p = −α∂θJ (1.26)

=⇒ p1 = µp0 − α∂θJ = −αµ∂θJ − α∂θJ (1.27)

=⇒ p2 = −αµ2∂θJ − αµ∂θJ − α∂θJ (1.28)

=⇒ pk = −α

(
k∑
i=1

µi

)
∂θJ

k→∞

−α
1− µ

∂θJ (1.29)

Thus, if we want to “keep” the optimal velocity of approaching optimal spot, we will
need to keep a balance between µ and α. �

1.5.2 Stochastic Gradient Descent

The sort of gradient descent that updates each step using the entire training dataset is
called batch training. Alternative to that we can use SGD which updates the parameters
based on the gradient for one single training example, i.e.

θ ← θ − α∇J (i)(θ) (1.30)

this allows the training to make a lot of progress before seeing all the training data. As the
name suggest, this of course will introduce noise, we can show that SGD gives unbiased
estimate of the batch gradient,

Ei
[
∇J (i)(θ)

]
=

1

N

N∑
i=1

∇J (i)(θ) = ∇J (θ) (1.31)

1.5.3 Minibatch SGD

The problem with SGD with one single training example at a time is that we can’t vectorize
operations and thus we can’t exploit efficient vectorized operations. As a compromise, we
can use mini-batch at each update, typically of size |M| = S = 100.

• We call one pass through the entire dataset as a epoch .

• Larger mini-batches will have smaller variance,

VAR

[
1

S

S∑
i=1

∂L(i)

∂θj

]
=

1

S2
VAR

[
S∑
i=1

∂L(i)

∂θj

]
=

1

S
VAR

[
∂L(i)

∂θj

]
(1.32)

• If we choose to have larger batches, then the algorithm will converge using fewer
weight updates since increasing batch size decreases the stochasticity. Otherwise, if
we choose to have small batches, we will be able to perform more weight updates per
second because update operations are now cheaper.

10

• #! Important: If actual time is proportional to FLOPs1.3 that a processor can
handle, then S = 1 is optimal.

– Under this assumption, 100 updates with S = 1 and 1 update with S = 100 will
require the same amount of operations and thus will require a same amount of
time.

– Clearly, holding everything else equal, we would prefer to have gradients for
fresh values of parameter by using 100 updates rather than 1 update. Of course, the

S = 100 update
would be less
noisy, but 100
steps, albeit
stochasticity,
would almost
certainly go
further than
one step.

• The batch size of choice strong depends on the hardware that the algorithm was
running on[1]

1.5.4 SGD Learning Rate

• In stochastic training, the learning rate also influences the fluctuations due to the
stochasticity of the gradients.

• In practice, we use a large learning rate early in training to that we can converge
faster and then gradually decay the learning rate to reduce the fluctuations at the
end of training.

• Notice that by reducing learning rate, we will reduce fluctuations, which can appear
to make the loss drop suddenly. However, this can come at the expense of long run
performance. [1]

1.3Floating Point Operations per second

11

1.6 Debugging Optimization

Here is a table that summarizes different problems that we might encounter during training
time, and how to can tackle them [1]

2 Convolutional Neural Net and Image Classification

2.1 Motivations for Convolution Layer

• Images are, usually, large and hence using a lot of fully connected layers would result
in an insane amount of parameter to learn and makes calculation intractable.

• In images, there are usually local patterns or relationships. For example in the task
of semantic segmentation, usually the pixel at bottom left has very little to do with
the pixel at top right and using a fully connected layer where every pixel contributes
to every output would be wasteful. Thus, we want to have an operation that focus
on local patterns of the input image.

• Also, the same sorts of features that are useful in analyzing one part of the image will
probably be useful for analyzing other parts of the image as well which motivates us
in using a “filter” to “slide” across the input.

2.2 The Convolution Operator

2.2.1 1-D Signal Processing

Consider two arrays, a and b. The result of the convolution will be a new array, where In order to
make this in-
dexing nota-
tion to work,
we have to
have the in-
dices start at
zero rather at
one.

(a ∗ b)t =
∑
τ

aτ bt−τ (2.1)

Here the summation over τ is a lazy notation for saying summing over all combinations
that makes sense. 2.1

2.1We assume infinite zero padding here, more on this later.

12

2.2.2 2-D Convolution

Consider two two dimensional arrays, A and B. The result of the convolution will be such
that the slot at (A ∗B)ij is calculated as

(A ∗B)ij =
∑
s

∑
t

AstBi−s,j−t (2.2)

Usually, we call the matrix/tensor that we convolve the original input with a “kernel” or
“filter”.

2.2.3 Properties of Convolution

• Convolution is Commutative, i.e.,

a ∗ b = b ∗ a (2.3)

• Convolution is Linear, i.e.,

a ∗ (λ1b+ λ2c) = λ1a ∗ b+ λ2a ∗ c (2.4)

2.3 Canonical Kernels
Some of these
canonical ker-
nels are not
working as ex-
pected...2.3.1 Blurring Kernel

0 1 0

1 4 1

0 1 0

(2.5)

2.3.2 Sharpening Kernel

0 −1 0

−1 5 −1

0 −1 0

(2.6)

2.3.3 Edge Detector Kernel

0 −1 0

−1 4 −1

0 −1 0

(2.7)

13

2.3.4 Vertical Edge Detector Kernel

1 0 −1

2 0 −2

1 0 −1

(2.8)

2.4 Convolutional Networks

In a Convolutional Neural Net, of course there will be convolution layers, however there is
another sort of layers that are common, called the pooling layer. Intuitively, pooling layers
shrink the dimensions by taking a “local pool”.

2.4.1 Pooling Layer

Most commonly, we use the max-pooling operation in the pooling layer, which computes
the maximum of the units in a pooling group

yi =
max

jin local pooling groupzj (2.9)

where z represents the input and y is the output. Typically, we use a 2 × 2 max pooling
unit, which outputs

α β

γ θ
−→ max{α, β, γ, θ} (2.10)

Thanks to pooling layers, deeper layers’ filters will cover a larger region of the input than
equal-sized filters in the lower layers. We say that deeper pooling layers have larger recep-
tive fields in terms of the original image.

2.4.2 Non-linearity in Convolutional Layers

After convolution operation, it is common to add a non-linear activation function to intro-
duce non-linearity. We are doing this because convolution is a linear operation and stacking
convolution layers together without non-linearity is no more powerful than a single linear
layer (possibly a fully connected layer). For example, the order of the layers could be

Image→ Convolution→ ReLU activation︸ ︷︷ ︸
Convolution Layer

→ Max Pooling→ Convolution→ · · · (2.11)

2.4.3 Equivariance and Invariance

TODO: I have no idea...

We want our network’s responses to be robust to translations of the input, which could
mean the following two things

14

• Convolution layers are equivariant2.2: if you translate the inputs, the outputs are
translate by the same amount.

• Network’s predictions are invariant: if you translate the inputs, the prediction should
not change. Pooling layers provide invariance to small translations.

2.4.4 Channels in Convolution Layers

Each layer is consist of several feature maps, or channels, each of which is an array (and
of the same size). In the case where input is an image, then usually we would have 3
channels for coloured input (RGB channels) and 1 channel if it is in greyscale. Each unit
is connected to each unit within its receptive field in the previous layer. This includes all
of the previous layer’s feature maps.

2.5 Size of Convolutional Neural Nets

There are several “measures of sizes” that are interested in, namely

• Number of units: measures the activations needed to be stored in memory during
training for back propagation.

• Number of weights: since weights need to be stored (and updated at each iteration)
in memory.

• Number of connections: measures the computation costs; approximately 3 add-
multiply operations per connection. (1 for the forward pass, and 2 for backward
pass.)

Below is the number of parameters in a fully connected multilayer perceptron layer along
side with those in a convolutional layer. [2]

2.2Equivariant means roughly“unchanged in terms of distortion”

15

fully connected layer convolution layer

output units WHI WHI

weights W 2H2IJ K2IJ

connections W 2H2IJ WHK2IJ

2.5.1 Rule of thumb on size

• Most of the units and connections are in the convolution layers, and

• Most of the weights are in the fully connected layers.

2.6 Supervised Pre-training and Transfer Learning

• In practice, we don’t usually train an image classifier from scratch since it is unlikely
hat we will have millions of cleanly labeled images for our specific datasets.

• If we want to do a computer vision task, it is common to just “fine-tune” a pre-trained
convolutional neural net on ImageNet or OpenImage.

• We will fix most of the weights in the pre-trained network. Only the weights in the
last layer will be randomly initialized and learnt on the current dataset/task.

Fine-tune, how?

• This depends on how many training examples do we have in the new dataset. For
example, if we have fewer ew examples, then we can fix more weights from the pre-
trained networks and only train a small subset of all weights. Of course, vice versa.

16

• This also depends on how similar is the new dataset to the dataset that our pre-
trained model was trained on. That is, we need ‘more’ fine-tuning if they have
dissimilar datasets.

• #! Important: Learning rate for the fine-tuning stage is often much lower than
the learning rate used for training from scratch. why?

17

References

[1] Jimmy Ba. Csc413/2516 lecture 4: Optimization. 2020 Winter Term.

[2] Jimmy Ba. Csc421/2516 lecture 5: Convolutional neural network & image classification.
2020 Winter Term.

18

	Optimization
	Prerequisites
	Determining Curvature
	Definite-ness

	Convexity
	Convex Sets
	Convex Functions
	Convexity Characterization with Hessian
	Convexity Composition Properties
	Convexity for Linear Models
	Non-Convexity of Networks

	Nuisance-ness of Cost Surface
	Saddle Point
	Plateaux
	Ill-Conditioned Curvature

	Alternative Gradient Descent
	Momentum Gradient Descent
	Stochastic Gradient Descent
	Minibatch SGD
	SGD Learning Rate

	Debugging Optimization

	Convolutional Neural Net and Image Classification
	Motivations for Convolution Layer
	The Convolution Operator
	1-D Signal Processing
	2-D Convolution
	Properties of Convolution

	Canonical Kernels
	Blurring Kernel
	Sharpening Kernel
	Edge Detector Kernel
	Vertical Edge Detector Kernel

	Convolutional Networks
	Pooling Layer
	Non-linearity in Convolutional Layers
	Equivariance and Invariance
	Channels in Convolution Layers

	Size of Convolutional Neural Nets
	Rule of thumb on size

	Supervised Pre-training and Transfer Learning

	References

