CS420 IMAGE UNDERSTANDING

@ Tingfeng Xia

Fall Term, 2020

This work is licensed under a @ @ @
license.

Information

e Syllabus can be found through
e There will be office hours every weekday. :D

Contents
1 Linear Filter 6
1.1 Fourier Transform Overview . . . . . . . . .. . .. ... ... .. ...... 6
1.1.1 Sinusoidal Waves . . . . . . . . . ... 6
1.1.2 Vector Forms . . . . .. .. .. .. . 6
1.1.3 Inner Product on Functions Space . . .. .. ... .. ... ..... 6
1.1.4  General Form (Periodic Function) - Fourier Series . . . . . ... .. 6
1.1.5 General Form . . . . .. . ... L 7
1.2 Image Representation . . . .. .. ... ... ... ... .. 7
1.21 TImage . . . . . . . . e 7
1.2.2 Image Coordinates . . . . . . . . . . ... ... 7
1.2.3 Coloured Images . . . . . . . . . . ... . 7
1.2.4 Image Transformations. . . . . . . . .. . ... .. ... ... 7
1.3 Noise Reduction . . . . .. .. .. . 8
1.3.1 1-DExample . . .. .. .. . 8
1.32 2D Case . .. .. . . e 8
1.4 Correlation Defined . . . . . . . . . ... L L 9
1.4.1 General Moving Average . . . . . . . . . . ... oo 9
1.4.2 General Filtering . . . . . . . . .. ... o 9


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://q.utoronto.ca/courses/181228/files/8680178/preview

1.4.3 Notation. . . . . . . ... L e
1.4.4 Correlation - Vector Form . . . . . . ... ... ... .........
1.4.5 Normalized Cross-correlation . . . . . . . ... ... .. ... ....
1.5 Boundary Effects . . . . . . . . .
1.6 Smoothing . . . . . . . ...
1.6.1 Uniform Smoothing . . . . .. . ... ... ... ...
1.6.2 Isotropic Gaussian Filter. . . . . . . ... ... ... ... ......
1.6.3 Non-isotropic Gaussian Filter . . . . . . .. .. ... ... ... ...
1.7 Convolution . . . . . . . . . . . e
1.7.1  Properties of Convolution . . . . . ... ... ... ... .. ...,
1.7.2  Convolution w/ Fourier Transforms . . . ... ... ... ... ...
1.8 Separable Filters . . . . . . .. ..
1.8.1 Isotropic Gaussian as Separable Filters. . . . . . .. ... ... ...
1.8.2 Moving Average as Separable Filters . . . . . . . ... ... ... ..
1.8.3 Edge Detector Kernel as Separable Filters . . . . . . ... ... ...
1.8.4 Separable-ness of Filters . . . . . . . ... ... ... ... ......

Edge Detection
2.1 Characterization of Edges . . . . . . . . . . ... oL
2.1.1 Imsights . . . . .. oL
2.1.2 Originof Edges . . . . . . . . ..
2.1.3 Characterizing Edges . . . . . . . . .. ... oo
2.2 Convolution as Derivative - Measure of Rapid Change . . . . .. ... ...
2.2.1 Canonical Finite Difference Filters . . . . . . ... ... ... .. ..
2.3 Image Gradient . . . . . . . .. . .
2.3.1 Gradient Defined . . . . . .. .. ...
2.3.2 Edge Direction . . . . . . . . ...
2.3.3 Gradient Direction . . . . . . . . ... ... ...
2.3.4 Edge Strength . . . . . ... o
2.4 Effectsof Noise . . . . . . . . .
2.4.1 Overcoming Noisiness . . . . ... ... ... ... ... ......
2.4.2  Faster Method Through Conv / Corre . . . . .. ... ... .....
2.4.3 Generalization: Derivative Theorem of Convolution . . . . . . . . ..
2.4.4 Remark: on Gaussian Derivative Filters’” Parameter . . . . . . . ..
2.5 Canny’s Edge Detector . . . . . . . . ...
2.5.1 Procedure . . . . . .. L
2.5.2  Non-Maximum Suppression (Thick Edges Problem) . ... ... ..
2.5.3 Hysteresis Thresholding (Discontinuous Edges Problem) . . . . . ..
2.6 Laplacian of Gaussians: Another Approach to Edge Detection . . . . . . . .
2.7 Auxiliaries . . . . ...
2.7.1 Connection: Sobel Filter and Gaussian Blur . . . . . . . .. ... ..

10
10
10
10
11
12
12
12
12
13
13
13
13
13



3 Image Pyramids

3.1 Image Sub-Sampling . . . ... . ... ... ... ... .
3.1.1 Nalve Solution . . . .. ... ... ... ... .....
3.1.2 Aliasing . . . . . . ..
3.1.3 Nyquist Rate (Nyquist-Shannon Theorem) . . ... ..
3.1.4 Gaussian Pre-Filtering . . . . . ... .. ... ... ...
3.1.5 Image Pyramids . .. .. .. ... ... .........

3.2 Image Up Sampling . . . .. .. ... ... ... .. ......
3.2.1 Nalve Solution . . . . . ... ... ... .. .......
3.2.2 1-D Signal Linear Interpolation . . . . . ... ... ...
3.2.3 1-D Linear Interpolation Via Convolution . . . . .. ..
3.2.4 1-D Non-Linear Interpolations . . . .. ... ... ...
3.2.5  2-D Image Interpolation . . . . . .. .. ... ... ...

4 Interest (Key) Point Detection

4.1 Review: Taylor Expansion . . . . . ... .. ... .. ......
4.2 The Problem and Goal . . . . . .. .. ... ... ........
4.2.1 Nalve Point Choosing Criteria . . . .. ... ... ...
4.3 Harris Corner Detector . . . . . . . . .. ... ...
4.3.1 Second Moment Matrix / Structure Tensor . . .. ...
4.3.2 Properties of Structure Tensor . . ... ... ... ...
4.3.3 Weight Sum of Squared Difference Maximization . . . .
4.3.4 Reverse Construction of Corners from WSSD Max Vals.
4.3.5 Harris Corner Detector (Harris and Stephens, 88’) . . .
4.3.6 Shiand Tomas, 94" . . . . . . . .. ... ... ... ...
4.3.7 Trigges, 04’ . . . . . ..
4.3.8 Brownetal, 05> . ... ..................

5 Motion and Optical Flow

5.1 Brightness Constancy Constraint . . . . . . .. ... ... ...
51.1 Pitfall . . . . . ...
5.2 Ambiguities . . . ...
5.2.1 The Aperture Problem . . . . . . . ... ... .. ....
5.2.2 The Barber Pole Illusion . . . . . . .. .. ... .....
5.3 Spatial Coherent Constraint: Solving Ambiguities. . . . . . . .
5.3.1 Lucas-Kanade Equation: Least Squares Solution . . . .
5.3.2 Connection: Second Moment Matrix . . . .. ... ...
5.3.3 Solvability Condition . . . . . . ... .. ... ......
5.3.4 Best Case and Pitfalls . . . . .. ... ... .......
5.3.5 Errors in Lukas-Kanade . . .. .. ... ... ......
5.4 Tterative Refinement: Dealing w/ Larger Movements . . . . . .

20
20
20
20
21
21
22
22
22
22
22
23
24

24
24
24
24
24
24
25
25
26
26
26
27
27



8

5.5 Coarse to Fine Optical Flow Estimation . . . . ... ... ... ... ....

Scale Invariant Interest Point Detection
6.1 Characteristics of Good Features . . . . . . . . . . . .. ... . ... ....

6.1.1
6.1.2
6.1.3
6.1.4

Repeatability . . . . . . . . ...
Saliency . . . . . . .
Compactness and Efficiency . . . . . ... ... o0
Locality . . . . . . . . e

6.2 Blob Detection . . . . . . . . . e

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11

The Goal: Blob Filter . . . . . ... ... ... ... ... ......
Mexican-hat Shaped Filter 1-D Intuition . . . . . . . ... ... ...
Laplacian of Gaussian Filter (2-D Formal) . . . . . ... ... .. ..
LoG and Derivative of Gaussian wrt Variance . . . . . .. ... ...
Difference of Gaussians . . . . . . . . . .. ... .. ...
Approximating Laplacian of Gaussian w/ Difference of Gaussians . .
Applying Laplacian of Gaussian 1-D . . . . . . .. ... ... ....
Characteristic Scale . . . . . . . . . ... ... ... . o
Applying Laplacian of Gaussian 2-D . . . . . . .. ... ... ....
Lowe’s Difference of Gaussian . . . . . . ... ... ... .......
Other Interest Point Detectors . . . . . ... ... ... .......

Scale Invariant Feature Transform (SIFT)

7.1 Step 1: Difference of Gaussians as Feature Detector . . . . . . . . ... ...
7.2 Step 2: Extracting Feature Points . . . . . . .. . ... ..o,
7.3 Step 3: Gradient Magnitude and Orientation . . . . . ... ... ... ...
7.4 Step 4: Dominant Orientation Extraction . . ... ... ... ... .....
7.5 Step 5: Computing the Feature Vector . . . . . . . ... ... ... .....

7.5.1
7.5.2

Achieving Rotation Invariance . . . . ... .. ... ... .. ....
Achieving [llumination Independence . . . . . . . ... ... ... ..

7.6 Properties of SIFT . . . . . . .. .
7.7 PCA-SIFT . . .
7.8 Matching Local Descriptors . . . . . . . . . .. ... oL

Planar Objects Matching in New Viewpoints
8.1 Review: Linear Transformations . . ... ... ... ... .. ........

8.1.1

Properties of Linear Transformations . . . . . . .. .. ... ... ..

8.2 Affine Transformations . . . . . . . . . . . . .

8.2.1
8.2.2
8.2.3
8.2.4

Properties of Affine Transformations . . . . . . ... ... ... ...
Approximating View Point Changes . . . . ... .. ... ... ...
Computing the Affine Transformation . . . .. ... ... ... ...
RANdom SAmple Consensus (RANSEC) . ... .. ... .. ... ..

32
33
33
33
33
33
33
33
35
35
36
36
37
37
37
38
38
39

39
39
40
40
40
40
41
41
41
42
42



9 Camera Models 46

9.1
9.2
9.3
9.4
9.5

9.6
9.7

Pinhole Camera Model . . . . . . . . .. .. ... ... .. .. 46
Camera / Image Coordinate System . . . . .. .. ... ... .. ...... 47
Projection . . . . . . . . 47
Camera Calibration Matrix . . . . . . . . . ... ... ... .. .. ..... 49
Projection Properties . . . . . . . . ... Lo 49
9.5.1 Many to One Projection . . . . . . ... ... ... ... ... ... 49
9.5.2 Vanishing Point . . . . . . .. ... oo L 50
Camera Extrinsics . . . . . . . . .. 50
Projection Equations . . . . . . . . ... L oo 51



1 Linear Filter

1.1 Fourier Transform Overview
1.1.1 Sinusoidal Waves

Consider a sinusoidal wave, it has a general form of
A cos (wt — ¢) (1.1)

where A is the amplitude, w = 27 f, where f is the frequency, and ¢ is called phase. Phase
describes the horizontal shifting for the wave away from the standard position.

1.1.2 Vector Forms
Consider a vector v = (3, 2)T, we write it as
v=3i+2j=(v-i)i+ (v-])j (1.2)

and we call {i,j} an orthonormal basis!-!.

1.1.3 Inner Product on Functions Space

Function space is an inner product space, and we can define, for a set of parametric function,
on an interval of [a, b] that

b
(). g(b) = / f(Hg(t) dt (1.3)

1.1.4 General Form (Periodic Function) - Fourier Series

For a function f(¢) that is periodic with period of T', the general form can ben written
as

_ap > 2kt > . 2wkt
ft) = 2+;ak cos (T) +kZ:1bk sin <T> (1.4)

. ag > 2kt
=3 ;Akcos< T gbk> (1.5)

where in the second form, we merged all the sin and cos terms with the introduction of a
phase term. In particular, this now takes the same form as discussed in Section 1.1.1.

il =1l =1A1-5=0



1.1.5 General Form

The general form also takes into consideration of non-periodic functions. In such case, we
need to change the summation into a integral. For any function f(¢), we have

F(w) = / f(t)e ™“tdt (1.6)

1.2 Image Representation
1.2.1 Image

Image is a matrix with integer values. The matrix would typically be denoted as I, and
I; j is called the intensity. For each pixel, we usually represent it use an unsigned 8 bit
unsigned integer and thus have range 2° = 0 to 28 — 1 = 255. For High Dynamic Range
(HDR) images, they will be represented with 16 bit unsigned integer. Also there are cases
that we (linearly) normalize the values by squashing them into [0, 1].

1.2.2 Image Coordinates

Image coordinates start from the top left. For a coordinate (i, ), ¢ specifies that it is in
the i-th row, and j specifies column. Also worth noticing that the most upper left pixel
has coordinates (1,1).

1.2.3 Coloured Images

In grey scale images mentioned in the previous two parts, for a image of size m X n, we
have a matrix of m x n 8-bit unsigned integers. Now with the introduction of colours,
we will have a tensor of m x n x 3 8-bit ints, corresponding to three colour channels. By
convention, they usually goes in the order of R — G — B. For example, I(2,3,1) means
the intensity of red channel of the image at location row 2 and column 3.

1.2.4 Image Transformations

For simplicity, we start with grey scale images. We can view any image as a function
f : R? — Zg_o55, and this enables us to transform images. An easy example would be to
increase the brightness of the image, which we can achieve so with

J(i,7) = min{I(7, j) + amount, 255} (1.7)

capping the max intensity at 255. Importantly, we can so some interesting operations by
treating images as functions. Namely, correlation and convolution.



1.3 Noise Reduction
1.3.1 1-D Example

Consider a signal, which is a real to real function, and our goal is to smooth the function
by imposing human knowledge that the signal should be smooth and should not contain
too many jitter. We can have

e Moving Average Filter, which is [1, ..., 1]/n, or
e Non-uniform Weights, for example [1,4,6,4,1]/16

1.3.2 2-D Case

8
8 8| 8| 8/ 8
8 8 8 88
8| 8 8| 8 8
3

Figure 1: Example of using moving average to smooth out an image, assuming no padding.

Much similar to the 1-D case mentioned above, we have our choice of whether to choose
an uniform filter or not.

e In the case of uniform (aka moving average), we choose (example of 3 x 3 filter)

111
11 1|/9 (1.8)
111

Figure 1 is an example of using moving average to smooth out an image, assuming
no padding. Notice that the sharp boundaries that we used to have between dark
and white is now smooth. Also, the isolated pixels ((6,5) and (9, 3)) are now blended
in.

De-noising is
usually an im-
portant first
step (prepro-
cessing) in any

e In case of non-uniform, we can again choose a gaussian like filter, such as

1 4 1 image task
4 10 4] /30 (1.9)
1 4 1



1.4 Correlation Defined
1.4.1 General Moving Average

In the general case, our filter could be any size. In particular, it needs to be of size square
of an odd number. Then, the moving average becomes

k k

G(i,7) = (2k:41—1)2 S I(i+uj+o) (1.10)

u=—kv=—"k

1.4.2 General Filtering

If we apply some filter (i.e., not just a average) then we can use

k k
G(i, )= > > Flu)-I(i+uj+v) (1.11)

u=—kv=—=k

where F(-,-) : R? — R is the called kernel or mask or filter such that >, >, F(u,v) =
1. The elements of the filter is called filter coefficients. Notice that if we take (|V|, |U]|
here denotes the max values that v, u can take)

1 1

Flwo) = Goree = v+ (1.12)

then Equation 1.11 just collapses to Equation 1.10.

1.4.3 Notation
The Filtering operation defined above is called correlation, denoted as
G=F®I (1.13)

where F' is our filter / kernel / mask, and I is the original image.

1.4.4 Correlation - Vector Form
Define
o f = F(:), writing the matrix into a vector.

o Ty =I(i—k:i+k,j—k:j+k), the part of image covered by the filter around
original image at coordinates (i, j)

e t;; = T;;(:) putting the part of image selected in previous step into a vector.

Notice that
filter is also
an image, so

® essentially
takes two im-
ages as input
and outputs
one image.




then,
G(i,j) = (£, ti;) = [[£]] ||ts;]| cos & (1.14)

which converts two for loops into one inner product. This is much faster to compute as far
as codes are concerned. TODO: above

we defined cor-
relation for one
pixel as a vec-

1.4.5 Normalized Cross-correlation tor operation,
In the task of finding Waldo, we wish to get a score of whether or not a patch of image o

. . . . . matrix form
looks like Waldo. In particular, we want this score to be the highest for the patch with -
Waldo, but not a very bright patch without Waldo. In an hope to achieve this goal, we can

use normalized cross correlation: (utilizing the vector forms in the previous section)

G(i,j) = & = cosf (1.15)
[E[] [ 5]]

where 6 is the angle between vectors f and t;;

1.5 Boundary Effects

Assume we have image size of m x n, and filter size of k x k. Referring to cv2.filter2d
in OpenCV and filter2(F, I, SHAPE), we have the following cases:

e shape = ‘full’ output size is bigger than the image; infinite padding include all
reasonable values. Output should have size (m + 2k — 2) x (n + 2k — 2)

e shape = ‘same’ output size is same as I; padding such that output size is equal to
input size.

e shape = ‘valid’ output size is smaller than the image; no zero padding; output
should be size (n —k+1) x (m —k+1)

1.6 Smoothing
1.6.1 TUniform Smoothing

depicts box filter:
white = high value, black = low value

Figure 2: Box Filter

10



The box filter depicted in Figure 2 is the exact same filter if we only keep the white part,
i.e. the 1 entries. As the size of the box filter increases, the end result gets more and more
blurry.

1.6.2 Isotropic Gaussian Filter

Figure 3: Comparison of filtered result using uniform filter (bottom left) and gaussian filter
(bottom right)

Recall that the gaussian probability distribution is defined as

Gaussian(x; pu, X) = (27r)*§ det(E)*%e*%(x*“)TE_l(x*”) (1.16)

and we can mimic this to develop a filter that has entries mimicking values taken by the
gaussian pdf. These filters produce results much nice than averaging in terms of smoothing,
as we can see in Figure 3.

Specification The Gaussian Filter G is parametrized by two parameters 3 = o (isotropic)

and p. In application, g doesn’t matter, we always want to make sure that the peak of
the gaussian pdf corresponds to the centre pixel of the filter. The size of the filter depends

11



on our choice of 3, e.g. it doesn’t make much sense if our kernel includes values more than
20’s away. We also need to normalize all the taken values again, to make sure the filter we
chose sums up to one!

1.6.3 Non-isotropic Gaussian Filter

In the most general case, Gaussian can be non-isotropic, meaning that its variance-covariance
matrix ¢s not of form ol

1.7 Convolution

The Convolution operation is defined as

k k
G(i, )= > > Flu) I(i —u,j—v) (1.17)

u=—kv=—Fk

Notice that this is exactly the same as Correlation defined in Equation 1.11 except that
we are flipping the filter in both dimensions (bottom to top, right to left). [y ap—
Gaussian / box

filters, since
the filter will

1.7.1 Properties of Convolution be symmetric
about both

horizontal and

Convolution is a Linear Operation, meaning that if f, g and h are three convolution oper- | vertical axis,
FxI=FQI.
ators, and A € R then ®

o Commutative: fxg=gx f

e Associative: fx(gxh)= (f*g)*h

e Distributive: fx(g+h)=fxg+ fx*h

e Assoc. with scalar multiplier: \- (fxg)=(\-f)*g

1.7.2 Convolution w/ Fourier Transforms

The Fourier transform of two convolved images is the inner product of their individual
Fourier Transforms, i.e.

F(fxg) = (F(f):F(9) (1.18)

Implications The computational complexity of Fourier Transform is much lower than
that of convolution. Also notice that inner products are fast to compute. Confirm and
finish this !

12



1.8 Separable Filters

For a K x K sized filter / kernel, the process of performing a convolution requires K2
operations per pixel, summing up to a total of #pixels x K? for an entire image. In many
cases, though not all, we can speed this process up by (1) performing a 1-D horizontal
convolution followed by (2) a 1D vertical convolution, requiring only 2K operations! When
we can do this trick, we call the kernel “separable”. And a filter is separable iff it is the
outer product of two vectors (each a 1D filter):

I?v,heRE st. F=vh' (1.19)

1.8.1 Isotropic Gaussian as Separable Filters

One famous example of separable filter that we are already familiar with is the Gaussian
Filter, assuming isotropic variance. In such case the density breaks down into
1

2, .2
Gaussian(z,y; u = 0,2 =ol) = exp{—x Ty }

o2 = (1.20)

[zl 2 el 5] oo

Such factorization of gaussian pdf indicates us that we should have two 1-D filters that are
1-D gaussian each.

1.8.2 Moving Average as Separable Filters

The naive moving average filter that we encountered earlier is also separable, in which

case
1 ... 1

F=|: - :|/K*=[K ... K] [I/K ... 1/K] (1.22)

1.8.3 Edge Detector Kernel as Separable Filters

The edge detector Come back:
left or right
edge detector?

-1 0 1
F=|-2 0 2|/8 v=[-1 0 1]/2; F=v'v (1.23)
-1 0 1

1.8.4 Separable-ness of Filters

A systematic way of checking if a kernel is separable if by looking at the singular value
decomposition of the filter. If only one singular value is non-zero, the it is sepa-

13



rable
F=UsV' => ouu, (1.24)

with 3 = diag (0;). Then, we can get the vertical and horizontal filter through

Flertical < Voiul Fhorizontal < vV 0'1VlT (125)

2 Edge Detection

2.1 Characterization of Edges
2.1.1 Insights

e Edge detection involves mapping image to a set of curves or line segments or
contours.

e Such representation is more compact than pixels. Notice that for a coloured (ordinary,
not HDR) m x n image, we will need m x n x 3 x 8 bits to store all the information.
However, for edges m x n would suffice.

e They are particularly useful due to their invariance towards illumination - it thus
helps computers see better. Aside: edges are also important for recognition for
human.

2.1.2 Origin of Edges

Qﬁt?.f surface normal discontinuity

T

N S
Lr depth discontinuity

i}i surface color discontinuity

| 4——=——— illumination discontinuity

Figure 4: Four origins of edges

Figure 4 illustrates the four types of edges that can occur.

o Surface Normal Discontinuity is where surface normals change direction abruptly.

14



e Depth Discontinuity is caused by depth discrepancy between two objects from the
angle of the viewer. For example here in Figure 4, the background and the bottle
causes a depth discontinuity.

o Surface Colour Discontinuity is for example the edge of black text T on a white
bottle.

o Tllumination Discontinuity is when there is a shadow causing difference in light.

2.1.3 Characterizing Edges

Definition An edge is a place of rapid change in image intensity function. The means
that at places where edges occur, the intensity function should be steep, and the first
derivative of the intensity at that position should correspond to extrema.

2.2 Convolution as Derivative - Measure of Rapid Change

Consider an image f(z,y) defined for z € ZZLS™ ¢y € ZZLS" how can we differentiate
this digital image given that it is not continuous? The answer is we take the first order
forward discrete derivative (finite difference), i.e.

af(l‘ay) f[m+1,y]—f[33,y]

(@) 1 (2.1)
and
Of(x,y) _ fley+1] — flz,y] (2.2)
oy 1 .

Correlation Filter Clearly we can implement the above as kernels,

0 0 O 0 1 0
H,=|0 -1 1| and H,= |0 -1 0 (2.3)
0 0 O 0 0 O
then, we have
of (x,y of (. y
[f ® Hol; 5y = (833) ) and  [f ® Hyl, = f?y) ) (2.4)
0] 0]

2.2.1 Canonical Finite Difference Filters

The Prewitt Kernel is more symmetric, and averages each pixel from neighbouring
pixels only. Also this filter applies a tiny blurring on the direction that it is not detecting
edge. (M, is blurring for vertical direction. )

-1 0 1 1 1 1
M,=1|-1 0 1| and M,=[0 0 0 (2.5)
-1 0 1 1 -1 -1

15



Sobel Filter is more common. Same as Prewitt, in the direction of that the kernel is
not detecting edges, it applies a bit blurring effect. However, in Sobel, the blurring is a
Gaussian blur.

~1 0 1 1 2 1
My,=|-2 0 2| and My,=[0 0 0 (2.6)
~1 0 1 -1 -2 -1

Roberts Kernel detects diagonal edges;

0 1
10

M, = [ } and M, = [1 0] (2.7)
2.3 Image Gradient

2.3.1 Gradient Defined

The gradient of an image f : R? — R is defined, exactly the same as usual, as
of of }

vf: [&B’@y

2.3.2 Edge Direction

The gradient always points in the direction of most rapid change in intensity. This means

that if

Vf = 8f7éo ~0 (2.9)

then that position corresponds to a vertical edge. If

of
Jdy

# o] (2.10)

Vf=1—=0,

when we are at a horizontal edge. At a slanted edge, we will get

f f

8x7é

Vi = [ L o] (2.11)

2.3.3 Gradient Direction

The gradient direction (i.e. orientation of edge normal) is given by

0 d
tanf = azjj 87]; = 0= arctan(af/ai) (2.12)

16



2.3.4 Edge Strength

The edge strength is given by the Lo norm of the gradient vector:

1v1] = \/ (2;’;) ¥ (gg) (2.13)

2.4 Effects of Noise

f(z) | : r}

H H H i H
0 200 400 600 800 1000 1200 1400 1600 1800 2000

d

dx

Noisy input image

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5: Illustration of noisy input problem.

As shown in Figure 5, when we have edges that are not sharp, the image is noisy and thus
cause the derivative messy.
2.4.1 Overcoming Noisiness

The solution to the problem is easy. We simply first smooth the input signal and then look
for edges. Le., for an input image f, and noise reduction filter (e.g. Gaussian) h, we find
extremum in 8% (h* f)

2.4.2 Faster Method Through Conv / Corre

We know that correlation is associative, i.e. f*(gxh) = (f*g)+*h. We can use this property
to speed up our method of overcoming noisiness mentioned in Section 2.4.1. Consider an
image I € M, xn(R), smoothing filter G € M}« (R), and x-derivative kernel F' € M. (R).
Then,

8‘1((;*1) = Fx(G+1I)) (2.14)
=(FxG)x1 (2.15)

and since k < m,n, Equation 2.15 i s much faster to compute.

17



2.4.3 Generalization: Derivative Theorem of Convolution

For a image f, with filter h, we have

0 oh of
—(h = | = =h - 2.16
2 e <ax>*f (a> (2.16)
i.e. rather than convolving the image with the filter and then take the derivative, we first
get the derivative of the filter and convolve the result with the image. [y ——

one operation.
2.4.4 Remark: on Gaussian Derivative Filters’ Parameter

We know that if we apply the derivative of gaussian as a filter to an image, it finds the
edges on the smoothened version of the image. However, the detected structures differ
depending on the Gaussian’s std. deviation chosen.

e If we have a large o, then the filter detects edges of larger scale

e else if we have a small o, we will be detecting finer structures.

2.5 Canny’s Edge Detector
2.5.1 Procedure
1. Filter images with derivative of gaussian (horizontal and vertical directions)
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis)
e Define two thresholds: low and high
e Use the high threshold to start edge curves and the low threshold to continue
them

Parameters There are three parameters (hyper-parameters) that we need to fix for the
algorithm, namely scale of Gaussian in step 1, and low / high thresholds in step 4. There
are no magical way in tuning them, so it requires quite a lot of experimentation.
2.5.2 Non-Maximum Suppression (Thick Edges Problem)

e check if pixel is local maximum along gradient direction?

e if yes, take it; otherwise neglect it.

18



i.e. in an image f we take (4,7) if in a local area
V(&' 3", 10, 5) > 1(7, ')

then keep ||V f]| <= [|[Vf|| otherwise ||V f]| <0

2.5.3 Hysteresis Thresholding (Discontinuous Edges Problem)
e Filter at high threshold, getting strong edges. Call this result S

e Filter at low threshold, getting weak edges, call this result W

(2.17)

e Along directions where edges develop in .S, if there is an edge in W at the same spot,
then we adopt it. Continue until a point where norm of gradient is below the low

threshold.

2.6 Laplacian of Gaussians: Another Approach to Edge Detection

Consider (noisy) image f, and a Gaussian filter h. We have the laplacian of h, as

and then we calculate 52
(30a) 1

where zero-crossings in the resulting graph correspond to edges.

2.7 Auxiliaries
2.7.1 Connection: Sobel Filter and Gaussian Blur

We already know that
Fx(GxI)=(FxG)xI

and suppose

1
F=[-1 0 1] and |2
1

N =~ DN

1
2| /14
1

then if we use the convolution sequence on the right, we will get

-1 -2 0 2 1
-2 —4 0 4 2 S M3X5(R)
-1 -2 0 2 1

82
a2

(2.18)

(2.19)

(2.20)

(2.21)

as an intermediate result. But this non-square result is not “nice”. So more commonly we

use

G=[1 2 1] /4

19

(2.22)



in which case

~1 0 1
FxG=1]-2 0 2 (2.23)
-1 0 1

and we notice that the result is exact the same as Sobel Filter we mentioned earlier.

3 Image Pyramids

In Linear Filter section, we talked about the technique of using correlation / convolution to
aid us find Waldo in a picture. However, that method relies on the filter and the matching
portion in the image being the same size. What should we do when we have the template,
but just a thumbnail image of the filter?

3.1 Image Sub-Sampling

The goal is very simple, how do we make a smaller sized image out of an original image?
e.g. 1/4 sized, 1/8 sized...

3.1.1 Naive Solution

Simply remove some columns and rows based on a predetermined rule, e.g. remove one in
every two row / column. In our example, the remaining pixel makes a 1/2 sized image.
We can do this again and again, creating an 1/2" sized image.

Pitfall - Natural Image This very simple solution creates images that look very crufty
(containing very sharp noises).

Pitfall - Synthetic Image In a computer synthesized image where there is a box, with
line width of 1px. Now I wish to resize the image by a factor of 2 by taking away every
other column and every other row (1st, 3rd, 5th, etc). But then, if any of the column /
row of pixel in the image is the same as the “every other row” discarded, then we have
problem - our box will have missing sides. And this is not a rare event.

3.1.2 Aliasing

Aliasing could occur when we sample from a source signal, and due to limitations in the
sampling rate / density we get a completely different sampled signal output. We say that
the sampling rate is not high enough to capture the amount of detail in the original signal.

20

This is com-
monly seen
when we take a
photograph for
a digital screen

and view it

on a display
with not high-
enough resolu-
tion.




3.1.3 Nyquist Rate (Nyquist-Shannon Theorem)

Poor sampling creates aliasing. To do sampling right, we need to understand the structure
of the input signal. The minimum sampling rate is called the Nyquist Rate3!. Harry states
that

e One should look at the frequencies of the signal, and
e find the highest frequency via Fourier Transform.
e To sample properly, you need to sample with at least twice that highest frequency.

In short, we need

Sampling Freq. > 2 x Max Freq. Component of Original Signal (3.1)

3.1.4 Gaussian Pre-Filtering

We now see that high frequency signals are “some-what” the problem in signal sub sam-
pling. In image, this typically correspond to sharp edges. The solution to this problem
is to use a Gaussian Filter to help us do a pre-filtering. The blurring helps aggregate, at

each resulting pixel positions, information from pixels around, making the image smoother
3.2

Theory Behind Recall that Gaussians are exponential, so we can write the pdf f(z) up
to a scaler multiplicand difference

1 —z?
2
— _ 3.2
o) =expl-ar’} o e { 35 | 32)
where a = 1/202. Then, the Fourier Transformation is
+o00 2 ok
F(f(x)) =/ e e = f(f(x)) (k) (3-3)
+o0 2
:/ e " (cos(—2mikz) + isin(—2mikx)) dx (3.4)
—o0
+o0 2
= / e cos(—2mikx)d (3.5)

- \/Z exp { _”ij } (3.6)

‘tnameed after Sir Harry Nyquist.

3

321 think this can also be explained by Statistical Multiplexing.

21


https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

3.1.5 Image Pyramids

A sequence of images created with Gaussian blurring and downsampling is called a Gaussian

Pyramid. We represent a N X N sized image as a pyramid of 1 x 1, 2 x 2, ..., 2k % 2k (ov, whis i
. . called a mg;
images, assuming N = 2%, map !

3.2 Image Up Sampling

Now we consider the opposite question: if an image is too small, how can we make it 10
times larger?

3.2.1 Naive Solution

We can repeat each row and column 10 times and create a “quasi” sized up image.
Pitfall We notice that this method of sizing up just made the size of the image larger,
but it does so by creating blobs of pixels representing the same pixel. This result is not
desirable.

3.2.2 1-D Signal Linear Interpolation

We can make a linear interpolation between neighbouring discrete points in the input signal
to create a better up sampling solution. Suppose input is F'(z), and between points z; and
x2, we wish to sample a x. Then,

x=ar;+ (1 —a)re,a € (0,1) (3.7)
and the estimated signal strength (by linear interpolation) is
F(z) =aF(x1)+ (1 — a)F(z2),a € (0,1) (3.8)
Rewriting and substituting gives us the final formula of

A To — X

F(z) T

F(x1)+

= F 3.9
Tro — I Tr9 — I1 (x2) ( )

3.2.3 1-D Linear Interpolation Via Convolution

Consider 1-D input signal F', and we first “expand” it (filling gaps between signal points
with 0s). We call this expanded version G’. Then, to get final result G, it suffices to

compute
G=hxG (3.10)

22



h = [071: 2717 2,£0:| x G

() 0 O 0
d

G bl TTTITTTTTTITITTT]

§F(1) + %F(Q)

Figure 6: Worked example of up sampling with linear interpolation via convolution. A
shown is the convolution filter, G’ is the expanded input, and G is final result.

Example (d =3) We can work out a h in a simple case of d = 3, as shown in Figure 6.
But what about the general case? What should be my reconstruction filter h, such that
G=hxG"?

General Case In general, we can find h using

1 d—1 . d-—1 1
h=10,-,...,——,1,——,...,=,0 3.11
pi y (3.11)
where d is the up-sampling factor to help determine the reconstruction filter. Notice that
the filter is symmetric.

3.2.4 1-D Non-Linear Interpolations

Previously we saw that we can use linear interpolation between points to help us recon-
struct signals in up sampling. We can also use nonlinear functions as interpolation, for
example

sine(z) = 1 forx =0
| ¥F  otherwise

produces so called “ideal” reconstruction

(3.12)

e [][(z) produces nearest neighbour interpolation.
e A(z) is our familiar linear interpolation

o Gauss(z) makes gaussian reconstruction

23



3.2.5 2-D Image Interpolation
4 Interest (Key) Point Detection

4.1 Review: Taylor Expansion

In general, if we have a function f that is C'*! around a point @, than for all = in a
neighbour hood of a,

f(@) = f(a) + f'(a)(z - a) (4.1)
Let’s call x — a as y, and since the value is small, lets call a as Ay. Then,
fly+Ay) = fly) + f(y)Ay (4.2)

This also works for R? — R functions, and in particular works for images, in which

Iz +u,y+v) = I(z,y) +u0I(z,y) +voy,l(x,y) (4.3)

4.2 The Problem and Goal

Given two (or more) images of the same subject or very similar subjects, identify (at least
some points in both images).

e We have to be able to run the detection procedure independently per image,
e we need to generate enough points to increase our chance of detecting matching pts,
e we should not generate too many key pts, or otherwise the algorithm will be really
slow in checking matching pairs.
4.2.1 Naive Point Choosing Criteria

We want to detect points that represent “corners” of objects in the image. This makes
these patches more unique. If all the edges of corners are x and y axis aligned, then we
can just choose points where both x and y directional partial derivatives are large. But
this clearly is not a general solution.
4.3 Harris Corner Detector

4.3.1 Second Moment Matrix / Structure Tensor

Define the weighted sum (called weighted sum of squares difference)

E(u,0) =) Y wlz,y) ((x,y) — (@ +uy +v))* (4.4)

41Will need C* if we want entire taylor series, but we are just using first order approximation here.

24



Here w(-,-) is called a window or weight function, I(-,-) is called the intensity function.
Our final goal is to make E(u,v) large for any small (u,v). We can expand F,

Fust) = 2 3 wle) (0,0) ~ o+ oy ) (45)
> Zy:w(x, y) (I(,y) = I(x,y) —udzl(z,y) —vd,I(x,y))”  (4.6)
= i Ey: w(z,y)(u?0, 101 + 2uv0, 10,1 + v*0,10,I) (4.7)
-E e 1[5 43

since the u, v extraneous variables, we can move them out,
Buwaa(,0) = [u o] (Z S wte) i G ]) H (4.9

MEM2><2(R)

4.3.2 Properties of Structure Tensor

. _[(0:1)? 0.10,1
For convinience, let { = [ 0,10, (9,1)2
e Clearly W is symmetric and real, so it must have all real eigenvalues.

e det{ = 0, so at least one of the eigenvalues of § is zero: \; = 0 and Ay > 0. We say
that t is a positive semi-definite matrix.

o detM =3 > w(z,y)det(). The sum of positive semi-definite matrices is also
positive semi-definite. Hence the eigenvalues of M are all > 0. (there are two of
them).

e Since it is symmetric and real, according to Spectral Theorem, this matrix is diago-
nalizable, and the rotation matrices are orthonormal.*?We have

[ 5 VI | I b VY
M—V[O AJV —V[O )\2]V (4.10)

4.3.3 Weight Sum of Squared Difference Maximization

We saw above that we can diagonalize M, and if we expand this into Fy,ssq, then

Eyssa(u,v) = [u 0]V [Aol AOQ] vt m (4.11)

420rthonormal: V'V =VV'  =Tand V' =V~

25



and this is big when both the two eigenvalues A1 and Ao are large.

4.3.4 Reverse Construction of Corners from WSSD Max Vals.

Above we saw the relationship between F, s and the eigenvalues, now we use this rela-
tionship to find out where in the image are the corners.

e If both A’s are small: Boring areas, not much change
e clse if both A’s are big: corner!

e else if just one of them is big, then it is an edge.

4.3.5 Harris Corner Detector (Harris and Stephens, 88) This is a
O
h-igh when both
R=XXA —a(X+ )\1)2 = det(M) — o - trace(M)? (4.12) | e

when at least

where R is rotationally invariant and downweighs edge-like features where A1 > Ag. « here | one cisenvalue

os small.

is a hyper-parameter that is typically 0.04 to 0.06. If we plot R on axis of A\; and Ao, then
we will see

e when A\; and A2 both large, then R will be large
e when they are both small, R will be close to zero

e and when one of them small, the other large, R will be negative.
Note on Interchanging Notation Notice that

det M = det V det [Al 0} det V1 (4.13)

0 Ao

but since V' is orthonormal, and importantly a rotation matrix, it has a determinant of 1.
43 Hence, det M = M\ \a.

Using Non-explicit Values We can notice that the formula is in terms of det and
trace operators, rather than just of the eigenvalues. Although these two forms are same
mathematically, they have different compute time. (you don not need to compute eigen-
values!)

4.3.6 Shi and Tomas, 94’

Shi and Tomas, 94’ proposed using the smallest eigenvalue of M, i.e. A\; 1/2

43Recall that determinant can be defined as the change of volume of unit square / cube after transfor-
mation. Rotating doesn’t change the volume of the shape, so determinant is 1.

26



4.3.7 Trigges, 04’

Suggested
)\0 - Oé)\l (4 14)

also reduces the response at 1D edges, where aliasing errors sometimes inflate the smaller
eigenvalue.

4.3.8 Brown et al, 05’

Suggested using the harmonic mean

det(M) . )\0)\1
trace(M) Ao+ A\

(4.15)

5 Motion and Optical Flow

Perceiving, understanding and predicting motion is an important. Obviously, in this case
the minimum amount of frame that we will need is two. Even the intelligent human brain
can be fooled - we have all seen those static picture that seems to be moving. The question
we wish explore in this section are

e Extract visual features®!

frames

(corners, textured areas) and “track” them over multiple

e Recover image motion at each pixel from spatiotemporal image brightness variations.
This is called Optical Flow.

Applications
e We may wish to achieve video stabilization (removing shaking),
e analyzing moving objects in a (series of?7) static frame
Feature Tracking Given two subsequent frames, say we want to estimate the point

translation. Some assumptions that we make are (as proposed in the original Optical Flow
paper; these assumptions are very strong)

e Brightness constancy: projection of the same point looks the same in every frame,
e small motion: points fo not move very far,

e spatial coherence: points (in a patch) move like their neighbours

51F g. Edges, corners, textures, objects are all so called visual features

27



5.1 Brightness Constancy Constraint

Suppose we have video and at time ¢, pixel location (z,y) have brightness level I(z,y,t).
Then, if during time ¢ — ¢ + 1 it had a displacement (u,v), then it must be that

I(z,y,t) =I(x +u,y+v,t+1) (5.1)
We can expand RHS, using Taylor approximation, around (z,y,t),
Iz +u,y+uvt+1)~I(z,y,t) +udel + vyl + 10,1 (5.2)
then we can reorder
Iz 4+uy+uvt+1)—I(x,y,t) =~ udyl + v0yl + 10,1 (5.3)

But since we assumed brightness constancy, the LHS of Equation 5.3 must be at least very
close to zero. Then,

w0yl +v0yI 4+ 10,1 =0 (5.4)
—VI-[u o] +0I1=0 (5.5)

where VI is obtained by treating ¢ as extraneous. We notice that our goal is to solve

. . T . .
the image motion vector [u v] , but we have only one equation for two unknown vari-
ables.

5.1.1 Pitfall

The component of the motion perpendicular to the gradient (parallel to edge) cannot be
measured. If (u,v) satisfies the brightness constraint equation (Equation 5.5), then so
does (u+u',v+0)if VI- [ o ]T = 0.>2This tells us that the brightness Constancy
Constraint will not help us recover motion along direction perpendicular to image gradi-
ent.

5.2 Ambiguities

5.2.1 The Aperture Problem

The aperture which was used to capture a motion can limit the way we interpret the motion.
See a gif from wikipedia:

which illustrates this phenomenon. In naive words, we cannot recover
motion that was not seen.

>2Since VI - [u+u' v+ v'}T =VI-|u U]T + VI - [ v’]T but VI - [v v']T could be potentially
zero if the motion [u' v'} is along direction perpendicular to gradient.

28


https://en.wikipedia.org/wiki/Motion_perception#The_aperture_problem
https://en.wikipedia.org/wiki/Motion_perception#The_aperture_problem

5.2.2 The Barber Pole Illusion

The revolving pole at entrance to barbers is really just revolving, but we perceive it as if
it was moving upwards.

5.3 Spatial Coherent Constraint: Solving Ambiguities

The solution lies within how we can get more equations for a pixel. We need help from
the Spatial Coherent Constraint. Assume that a pixel’s neighbours have the same motion
vector (u,v), and if we assume a 5 x 5 window, that gives us 25 equations per pixel, then
we will have

V pixel p in the 5 by 5 window, VI(p) - [u ’U]T +0I(p)=0 (5.6)
Now we can expand the for all quantifier into a matrix operation,

0:I(p1) Oyl(p1) 0 I(p1)
: : Uy : =0 (5.7)

v :
O0z1(p2s) Oyl(p2s) 01 (p2s)

and we rearrange it into a standard linear system form (Ad = b),>3

0:1(p1)  Oyl(p1) ol (p1)
5 I I (5.8)
O0:1(p2s) Oyl(p2s) | ~~ O (p2s)
2d —_—
24 £p

5.3.1 Lucas-Kanade Equation: Least Squares Solution

Least Squares Solution for the motion vector d is given by

ATAd=A4Tb —

Yop 0el(P)O:1(p) Doy 0:1(P)3yI(P) ] [ u ] _ [ 2p I P)OI(P) ] o)
> 0x1(P)OyI(P) > OyI(P)IyI(p) | | v > p Oy I(P)O:I(p) '

where the summations are over all pixels in the K x K window. (In our case, 5 x 5).
Equation 5.9 is called the Lucas-Kanade Equation.

534 ¢ Mssx2(R),d € Max1(R),b € Masx1(R). Here d is the motion vector that is unknown and we want
to solve for it.

29



5.3.2 Connection: Second Moment Matrix

We can notice that

>op 01(P)0:1(P) > 0:1(P)0yI(P)
>y 0:1(P)0yI(P) >y 0yI(P)0yI(P)

is precisely the second moment matrix.

ATA = (5.10)

5.3.3 Solvability Condition

Optimal motion vector satisfies Lucas-Kanade Equation (Equation 5.9). It takes the form
ATAd = ATb and then ideally, we can solve d = (AT A)~1(A"b). Clearly it is not always
ideal, so we summarize the solvability conditions as follows:

e AT A is invertible, i.e det(AT A) #0

e AT A should not be too small due to noise: eigenvalues Ai, As of AT A should not be
too small®*

e AT A should be well conditioned: max{A1, A2}/ min{\;, Ao} should not be too large.

Importance of Eigenvectors The eigenvectors here summarizes the distribution of
gradient of the image I, within this window of K x K.

e Suppose that the two eigenvectors are such that A\ > Ao, and they have respective
eigenvectors e; and es. Then we know that e; is the direction that is maximally
aligned with the gradient of the image in the K x K window. Let’s now further
suppose that A1 > 0A Ay = 0, then the gradient is always a multiple of e;, since there
is no eigen-compinent from ey due to Ay = 0. This is the case if and only if I varies
along with the direction e; and is constant along es. Edges!

e If Ay = Ao, then the gradient in the K x K window has no prominent direction, which
happens when we have rotational symmetry within the window!
5.3.4 Best Case and Pitfalls
Edges Causes Problems In real world images, slanted edges in images make things

harder. Only one of the two eigenvalues will be small, and the other one will be large.

Low Texture Regions Don’t Work When 0,/ and 0, are small (in terms of magni-
tude), we cannot easily recover motion. We will have small A\; and As in this case.

54RWe need this to be not close to singular, if it is close to singular, it’s determinant will be close to zero,
and the inverse will blowup.

30



High textured region works the best In this case gradients are different, with large
magnitudes, and we have large A\; and As.
5.3.5 Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?
e Suppose A' A is easily invertible
e Suppose there is not much noise in the image
When our assumptions are violated, we can easily catch them through our calculation,
e brightness constancy not satisfied
e the motion is not small

e A point does not move like its neighbours: window size is too large, but what is the
ideal window size?

5.4 Iterative Refinement: Dealing w/ Larger Movements

The idea behind is to break down large movements into smaller ones, and we can let our
Lucas Kanade solution handle the small movement. The procedure is as follows;

1. Initialize (2',y') = (z,y)

2. Compute (u,v) by
o HI0P) T DIILD) ] ]
2 0:1(P)OyI(p) >y 0,1(P)0y1(p)

[ 2 0:I(p)OI(p)
- [ > 9,1(p)O1 (p) } (5.11)

but with 9,1 = I(2/,y/,t + 1) — I(x,y,t), where (z,y) is the original position.
3. Shift the window by (u,v): @' =2’ +w; ¥ =y +v
4. Recompute 0,1,

5. repeat steps 2 - 4 until small changes. Note: use interpolation for sub-pixel values.

u(next) = u(current) + u(prev); v(next) = v(current) + v(prev) and they tends to
Z€T0.

31

I think this
means small
motion dis-
placement.



5.5 Coarse to Fine Optical Flow Estimation

How much motion is “small”’? This is hard to answer, but we are sure if it is in terms of
just a few pixels (maybe 1) then the motion is small. We can construct a gaussian image
pyramid for each frame, and at a downsampled layer, we perform iterative Lucas Kanade.
We then refine, using calculations, the motion detected to the original image.

A Few Detalils
e Top Level

— Apply L-K to get a flow field representing the flow from the frist frame to the
second frame,

— apply this flow field to warp the first frame toward the second frame

— rerun the L-K on the new warped image to get a flow field from it to the second
frame.

— repeat until convergence
e Next Level

— Upsample the flow field to the next level as the first guess of the flow at that
level

— apply this flow field to warp the first frame towards the second frame
— rerun L.-K and warping till convergence as above

e ctc

6 Scale Invariant Interest Point Detection

In last section, we talked about corner detection. If we zoom in on an area that was
classified as a corner, at some point, it might cease to be a corner and become an edge.
Hence, corner location is not scale invariant!

End Goal is to be able to match an object in different images where the object appears
in different scale, rotation, viewpoints, etc. How?6!

51How can we independently select interest points in each image, such that the detections are repeatable
across different scales?

32



6.1 Characteristics of Good Features
6.1.1 Repeatability

Repeatability means that the same feature should be found in several images despite geo-
metric and photometric transformations.

6.1.2 Saliency

Saliency means each feature we compute should be distinctive. We don’t want each point
in image A correspond to many interest points in another image B. If this is the case, it is
really hard to find the correct correspondence.

6.1.3 Compactness and Efficiency

We want out feature vectors “represent” fewer elements than the actual image pixels, and
at the same time we want these features to represent something meaningful.

6.1.4 Locality

We always want out features to be computed from a local and small area from the image.
Hopefully, this helps us handle occlusions. E.g. a car with two wheels with a feature
vector representing one of the wheels, and now if half of the car is block by something, the
algorithm can still recognize this car model from the wheel it is able to see.

6.2 Blob Detection

Definition (Blob) A blob in an image is a patch of pixels that share some common
property. e.g. they all have the same grayscale intensity values.

6.2.1 The Goal: Blob Filter

We wish to have a template of some sort, so that patches of the image could be compared
against. We would like to have score that measure the similarity between a patch and
template, and only be high when they match, and low otherwise. Scientist have drawn
inspirations upon biological vision systems, particularly from a type of cell called centre-
surround receptive field.6-2

33



Gaussian PDF First Derivative

1.0 A 0.6
08 0.4
0.2 1
0.6 1
0.0
0.4
—0.2 A
0.2 1 —0.4
0.0 1 0.6 1
53 2 4 0 1 2 3 3 2 4 0 1 2 3
Second Derivative Negative of Second Derivative
0.4 1.0
0.2 0.8 1
0.0 0.6
_02+ 0.4
—0.44 0.21
064 0.0
_o08H -0.2 4
104 —0.4
-3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3

Figure 7: Construction of Mexican Hat Filter from Gaussian (1D Example)

34



6.2.2 Mexican-hat Shaped Filter 1-D Intuition

By taking second derivative of the Gaussian density, and taking negative we get the Mexican
Hat filter (1D). Figure 7 illustrates the process. Around the centre of this hat, we will see
positive values, e.g. approx. from -1 to 1 in our example. And if we go beyond the
threshold, (> 1V < —1) the the filter has negative values. This makes this function perfect
for the role of blob detector! The 2D case can be easily obtained by revolving the 1D
Mexican hat around zero point.

6.2.3 Laplacian of Gaussian Filter (2-D Formal)
Suppose G : R? — R specifies a Gaussian density, then
(LoG(z,y) =) L(7,y) £ AG = 0,2G + 0y, G (6.1)

is the laplacian®? of Gaussian. Now let’s derive this. We start with the 2D gaussian density
(assuming isotropic density, i.e. ¥ = o), which is

1 72 +y f(ay)
G(z,y) = 377 &XP {— 5,2 } =ce (6.2)
——
el f(ay)
Then,
0,G = O, fel @Y — 9.6 =c ( @) 4 9, O, fe @V ) (6.3)
1 2
< ﬁef(r,y . f(r,y)> (6.4)
2
<$ > f(zy) (6.5)
and similarly,
_ o2
8y G = ¢ ( > Fay) (6.6)
then arrive at our final form
22 — g2 N y? — o2 N
L(z,y)=c <U4> @Y 4 ¢ <04> el @) (6.7)
1 (2®+y° (2% +9%)

6-2with an excitatory centre and an inhibitory surrounding. They have been identified with usages such
as edge enhancement, which enables human to perform better in detection and localization, and tracking
of small objects.

6-3Note: Laplacian operator is a second order differential operator in the 2D Euclidian space. It is
defined as the divergence of the gradient of the function. In our case, the function is gaussian density.
Af =V f =V .Vf

35



The above final result will give us the inverse Mexican Hat (R? — R).

6.2.4 LoG and Derivative of Gaussian wrt Variance

Recall that

1 (x4 y? (22 +y?)
and ) )
1 Tz +y "
G(z,y) = 352 OXP {— 5,2 } = ce/ @) (6.10)
—
ceR ()

clearly they look similar to one another. Now we want to find how they are connected math-
ematically. Staring at the equation, let’s start with making them look them by cancelling
and constants in front. We have

2no? [ 12 4 y?
LoG(z,y) = G(z,y,0) i < 202y - 1> (6.11)

We can also derive that

do o

22 4 02
oG _ 1 <( ;y ) —2) G(z,y,0) (6.13)

but wait! The above two equations look more than “just similar”, in fact

0,G = 0 LoG(z,y) = cAG(x,y) (6.14)

6.2.5 Difference of Gaussians

By definition, the difference of gaussians is calculated as

DoG(z,y,0,k) = G(z,y,0) — G(z,y, ko) (6.15)
1 22 4 y? 1 2?2 +y?
= — — —— 1
2102 exp{ 202 } 2mk20? exp{ 2k%02 } (6.16)
Then,
-1 G(x>y70) — G(.%‘,y, ]{JO')
DoG = 1
1 oG p— - o (6.17)
oG
Recall from Equation 6.14, then we know
0G
DoG =~ (1 — k)aa—a = (1 - k)o*AG(z,y). (6.19)

36

add derivation
to this, home-
work.



6.2.6 Approximating Laplacian of Gaussian w/ Difference of Gaussians

To see how the above two sections relate, we will need one example. Suppose we have an
image I(z,y), o(s) = 2%, R(z,y,0) = (G(x,y,0) * I(x,y)). Now let’s take the derivative
of R with respect to the scale parameter s here,

OR 0G

35 = 85 " I(z,y) (6.20)
= log20(s) (gf x I(x, y)) (6.21)
= log 20°AG(z,y) * I(x,y) (6.22)

Now notice the final result from Section 6.2.5 Difference of Gaussians contains a similar
filter as what we just derived. Scientist uses difference of gaussians as approximation for
laplacian of gaussian filter.

But Why Isn’t LoG Good Enough? The LoG filter is a non-separable one, and
things get especially bad when we need a filter of large size. The laplacian of gaussian filter
however, is a lot faster in terms of computation time since it is separable.

6.2.7 Applying Laplacian of Gaussian 1-D

When we try to use laplacian of gaussian to detect blob, we first convolve the input signal
with the LoG with some arbitrary o. Then we gradually increase the sigma, and find
extremes that are scale invariant in terms of o.

6.2.8 Characteristic Scale

We define the characteristic scale as the scale that produces peak (min / max) of the
Laplacian response. This means that to detect a blob of certain size, we will need a
Laplacian of Gaussian of a certain “scale” - the characteristic scale!

37



6.2.9 Applying Laplacian of Gaussian 2-D

J/LX.‘Y) M | ; ) -

D:‘ DT:.('-- <ch
Temgor, Mxnx k

Figure 8: Using Laplacian of Gaussian to find interest points in 2D case (images). Interest
points are local maxima in both position and scale.

Applying Laplacian of Gaussian in 2D image case is similar to the 1D case presented earlier,
just this time we have an array of output maps (really a tensor). Figure 8 illustrates the
input and output. The interest points that we want to find are local maxima in both
position and scale, i.e. interest points are consistent along vertical direction in the output
tensor.

6.2.10 Lowe’s Difference of Gaussian

First compute a Gaussian image pyramid, and then compute the Difference of Gaus-

sians
for p = {0', ko, k%o, ... ,ks_lo'} where k = 21/%. The application process is quite similar to
the LoG one we discussed above, we will need to compute
I;=1x%Gpso (6.24)
: (6.25)
I =1 %Gy, (6.26)
I =1x%xGjy, (6.27)
Io =1 %Gy, (6.28)

38



Then we compute their differences (element-wise). There should be s difference maps, i.e.
Iy — Iy, Io — I1,.... Once we are done with the current scale, we will do it for the next
one. (this is why we need the gaussian pyram id in the first place.) Finally, we find local
maxima in scale, and do a bit of pruning of bad maxima.5* We are done!

6.2.11 Other Interest Point Detectors

Lindeberg: Laplacian of Gaussian

Lowe: DoG (Typically called the SIFT interest point detector)

Mikolajczyk & Schmid: Hessian / Harris laplacian / Affine
Tuyttelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions

7 Scale Invariant Feature Transform (SIFT)

7.1 Step 1: Difference of Gaussians as Feature Detector

The first step is the same as described in section Lowe’s Difference of Gaussian. First
compute a Gaussian image pyramid, and then compute the Difference of Gaussians

D(:E7y>p) = I(l’,y) * (G($7y> kp) - G(ZE,y, p)) (71)

for p = {a, ko, k%o, ... ,k:sfla} where k = 21/%. The application process is quite similar to
the LoG one we discussed above, we will need to compute

Iy = I % Gy (7.2)

: (7.3)
Iy =1%Ge, (7.4)
I =IxGp, (7.5)
IO =1 Gkoa (76)

Then we compute their differences (element-wise). There should be s difference maps, i.e.
I — Iy, Is — I,....

64Look over every z and y, what is the highest response in the scale space? We will keep all points with
response greater than a certain threshold.

39



7.2 Step 2: Extracting Feature Points

For each key-point, we take the Gaussian-blurred image at corresponding scale p. Notice
that this information needs to be stored as a pair. We will need this in the following
steps.

7.3 Step 3: Gradient Magnitude and Orientation

Compute the gradient magnitude and the orientation in neighbourhood of each keypoint
proportional to the detect scale. To achieve so, we first blur the image with gaussian wth
respective p,

I+G), (7.7)

Then, compute, on a 16 x 16 neighbour around the key-point, the magnitude of gradi-

Vi) = \/ A ) (7.9

ents

and the gradient orientation

(7.9)

0(z.y) = arctan <8I>|< G, Ol % Gp)

ay/ax

7.4 Step 4: Dominant Orientation Extraction

In this step, we wish to weigh gradients closer to the centre of the 16 x 16 patch higher.
We can achieve so by element-wisely scale the gradient magnitudes according to a gaussian
density

VI(z,y) | -G1sp(d) (7.10)

then we compute a histogram of gradient orientations, each bin covers 10deg. The orien-
tation giving the peak in the histogram is the key point’s orientation.

7.5 Step 5: Computing the Feature Vector

Compute a 128 dimensional descriptor: 4 x 4 grid, each cell is a histogram of 8 orientation
bins relative to dominant orientation. Each descriptor has

P = (zi,4i,pi,%;) and  f; = .. € R'*® (7.11)

where z;,y; marks the location, p; marks scale, ¥; is the orientation and f; is the feature
vector. This step is a bit abstract and hard to follow, let’s dive deeper. Figure 9 illustrates
the process. Each 4 x 4 component in the original 16 x 16 window contributes to the 128
dim™! vector as one unit, via a 8 bin histogram.

"1 The original 16 x 16 grid is now treated as a 4 x 4, since each 4 x 4 subunit is now treated as one entity.
There is one 8 bin histogram in each 4 x 4 grid, and thus we have 4 x 4 x 8 = 128 bin values in total.

40



D o - koyjpont
& % . § vin vote For cach 4x4
) 4 A’“&f coqmmt, intotal fkmvmr
S %
Wgﬂwﬂ 434 al,ml, wm toted
b X\b NWO[OV\J
RV

Figure 9: The 4 x 4 grid 8 bin vote transformation process.

7.5.1 Achieving Rotation Invariance

Our method as it is now is rotation dependent, i.e. if I rotate the original input image,
everything will change. But how can we make it rotation invariant? At this point, we
already have the dominant orientation from Step 4, so we just make the 8 bins based on
the dominant orientation direction.

7.5.2 Achieving Illumination Independence

To achieve this, we just need to use some thresholding. Suppose we have an feature vector
f1 € R'2® then”?

f2[j] = £1[j] > thres ? thres : f1[j], for each j (7.12)
Finally, we need to normalize £2,

f = (f2 .- mean(f2)) ./ normL2(f2) (7.13)

7.6 Properties of SIFT
SIFT is invariant to

e scale, and

e rotation

SIFT is partially invariant to

721 am using pseudo-code here just to make everything easier...

41



e [llumination changes (sometimes even day vs night)
e Camera viewpoint (up to about 60 deg of freedom of out of plane rotation.
e Occlusion, clutter

Also it is important that SIFT is fast and efficient, can be run in real time! There are also
a lot of code available :D.

7.7 PCA-SIFT

The dimensionality of SIFT is pretty high, we need 128 dimensions for each key point. We
can try to reduce he dimensionality using linear dimensionality reduction such as Principle
Component Analysis (PCA). We can reduce the dimensionality of each descriptor to 10 or
so with PCA.

7.8 Matching Local Descriptors

So far, we have talked about SIFT, which computes a bunch of local descriptors for interest
points. But now we want to match the features between pairs of images. Ideally, a match
is a correspondence between a local part of the object on one image to the same local
part of the object in another image. The naive approach on this is to brute force compare
all possible pairs of interest points detected in two images, and see if we have a match by
computing a distance metric such as Euclidean distance. But can we rely solely on this min
Euclidean distance criteria as the indicator of a match? There will be cases that several
close matches exist, which essentially means that the system is not confident on one choice.
To address this, we introduce the ratio

i Distance to closest

= 1| ~ Distance to second closest

b (7.14)

where f/* is the closest and f/** is the second closest. If ¢; is small enough, then we have a
reliable match. Otherwise if ¢; is large, then the system is unconfident. Notice that
e High threshold introduces false positives, i.e. incorrect matches being returned, while
e Low threshold results in false negatives, i.e. too many correct matches being missed.

Typically, we pick ¢; < 0.8

8 Planar Objects Matching in New Viewpoints

8.1 Review: Linear Transformations

Linear transformations / linear maps are combinations of Scale, rotation, shear and mirror.
A transformation T' maps from one vector space into another one, and T : V' — W is linear

42

why?



iff vu,veVkeR
e T(u+v)=Tu)+T(v)eW
o T(ku) = kT (u)

In our context of image, and in our task of finding the transformation between viewpoint
changes of images, we will be dealing with 2 x 2 images, and the linear map will be achieved

via a matrix multiplication
x’ a b x
)=l ©

And there are several canonical transformation matrices (form) that get used often

x! s1 0 T
)=l L] +2
Rotation Matrix Counter-clock wise rotation 6 radian of the original vector space.
x’ cosf) —sinf T
[y/]_ [sin& cos 0 } [y} (8.3)
Shear Matrix ‘distorts’ rectangles into parallelograms.

| |1 A0 x
Lo LT 50
Mirror Matrix Let

-1 0 -1 0 1 0
I R i e R B
then, A mirrors both = and y directions, and B,C mirrors only = or only y respec-
tively.

Scaling Matrix

8.1.1 Properties of Linear Transformations
e Origin always maps to origin, and
e lines always map to lines, and
e parallel lines remain parallel, and
e ratios are preserved, and

e closed under composition, meaning that we can collapse a serial of matrix together
before applying it. Often, this is computationally more efficient.

43



8.2 Affine Transformations

So far, we’ve discussed linear transformations, which only accounts for transformation not
translation. To address, we introduce the affine transformation, which takes the general

form of
ARSI

8.2.1 Properties of Affine Transformations
°
e Lines map to lines, and
e parallel lines remain parallel
e ratios are preserved, and
e closed under composition, and

e rectangles go parallelograms

8.2.2 Approximating View Point Changes

Affine transformation approximates viewpoint changes for roughly planar objects and
roughly orthographic cameras.

8.2.3 Computing the Affine Transformation

Let (z;,y;) be a point on the reference (model) image and «}, y; its match in the test image.
An affine transformation A maps (x;,v;) to (z}, y.):

z,| |a b e acz g7
T e d f 31/ (8.7)

where the matrix with elements a,b, ..., f is a unknown matrix. This system gives us 2
equations, but we have 6 unknowns to solve for. To address, we can rewrite this into a
simple linear system. (still 2 equations with 6 unknowns)

xiyi0010
001‘1’%’01

~ 0O QL 0 QR
Il
| —|
SR
Y~
—
oo
02¢)
SN—

44



but the catch is that we have more than one match! and for each match we have two
equations. We can stack all the equations up®! and make it a bigger system, still with just
6 unknowns. Let’s call this stacked system as

Pa=7p’ (8.9)

Notice that here it suffices to have three matching points to solve for the affine transfor-
mation. If we have three matches, then computing A is really easy:

a= P lp (8.10)

However, the more matching points data we have, the more reliable it will be, and in this
case, we do the least squares estimation

mianPa—p’H; (8.11)

a,b,...,
which has a closed form solution
a=(P'P)"tPTp (8.12)

where (PTP)~'PT is called Moore-Penrose Pseudo-inverse.

8.2.4 RANdom SAmple Consensus (RANSEC)

In previous sections, we assumed that there will be good correspondence between points.
However, in reality, this might not be true, and we might suffer from outliers. In particular,
least square estimation is very sensitive to outliers. RANSAC is here to the rescue. The
approach is quite simple, and is as follows:

e Take the minimal number of points to compute what we want. In a Simple Linear
Regression (SLR) line example, two point. And in our affine example of matching
two images, three matches.

e By “take” we mean choose at random from all points
e fit a line to the selected pair of points
e count the number of all points that agree with®? the line: calling them inliers.

e repeat this many times, remember the number of inliers for each trial, and the re-
spective points selected for the generation of that specific line

e among several trials, select the one with the largest number of inliers.

8-1Vertically stack the matrices
8-2within some & neighbourhood of the line

45



How many iterations?
e Suffience number of trials S must be tried

e Let p be the probability that any given correspondence is valid and P be the total
probability of success after S trials.

e The likelihood in one trial that all k¥ random samples are inliers is p*, then
e At least one one the k points is an outlier has probability (1 — p¥),
e All S trials are bad has probability (1 — p*)®, then

e the probability of a least one is good is

P=1-(1-p"" (8.13)
e and it is possible to solve
log(1 — P)
== 7 14
log(1 — p*) 19

where PT=— SfT,andpl=—= ST, andkt= S7

9 Camera Models

Images are 2D projections of the real world scene, it captures two kinds of information
e Geometric: positions, points, lines, curves, etc
e Photometric: intensity, color

There is a complex 2D - 3D relationship between the 2D image captured by an camera
and the actual scene which is in 3D. We use the camera model to approximate these
relationships. We will discuss how are 3D primitives projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix.

9.1 Pinhole Camera Model

The distance from the camera pinhole to the image plane (which has the upside down,
left-side right image projected) is called the focal length, denoted f. A virtual image plane
is between the camera pinhole and the object in the world. It will be exactly focal length
away from the camera centre, and it will have the exact same sized image as the image
plane. (except this one is not upside down and left-side right. ) It is easier to consider this
plane. Now the goal is to find how the object in the world projects to the (virtual) image
plane.

46



9.2 Camera / Image Coordinate System

We define the camera pinhole as the origin 0 € R3, it is called the optical centre. We use the
right hand rule for specification of axis positive orientations. That is, from the perspective
of the camera, towards left means positive in X direction, and upwards means positive in
Y direction and further away from the camera (increase in depth of field) corresponds to
positive direction in Z.

The Z axis is given the name of Optical Axis or Principal Axis. It is orthogonal to the
(virtual) image plane between the object in the world and the camera centre. The camera
coordinate axes X,Y are parallel to the image plane. The principal point p denotes the
point where the principal axis intersects with the image plane. Note that ||p|| is equal to
the focal length.

We denote the image axes with x and y. An image we see is of course represented with
these axes. We call this an image coordinate system.

9.3 Projection

Suppose we have a point Q € R? = (x,y,z)'. (suppose that it z > f) Then, using similar
triangles (actually 3D similar triangles in this case), we know that this @ will appear on

the virtual image plane at
fox foy L\
(fx 12y (91)

z z
The notion above is relative to the principal point p, but on a 2D projection the depth
information is extraneous, and we can disregard it. We do so by essentially moving the
origin to (0,0) in the image. Let p have coordinates (ps,p,) on the image plane in terms
of the image coordinate system, then the projection is

.
(fZXerx,fzy —i—py,O) (9.2)

then the depth dimension is no longer useful and we have the actual projection onto the
2D image plane by throwing the last coordinate, i.e.

.
Q=(xy,z2) ~qg= (foerz’fzy +py> (9.3)

Notice that this is not a linear transformation, since we have a division of z in in the new
coordinate. (it is linear in terms of 1/z but not in terms of z). The problem now is how I
can make this ~» happen, but linearly.

We will use homogeneous coordinates (aka projective coordinates), which simply append
1 to the vector. For a 2D position (x,y), it becomes (z,y,1). Similarly for 3D positions,
which will turn into a 4D vector.

47



Side Note: Homogeneous Coordinates A brief summarization of what ho-
mogeneous coordinates are ... borrowed from

e Any point in the projective plane is represented by a triple (X,Y, Z), called the
homogeneous coordinates or projective coordinates of the point, where X, Y and
Z are not all 0.

e The point represented by a given set of homogeneous coordinates is unchanged
if the coordinates are multiplied by a common factor.

e Conversely, two sets of homogeneous coordinates represent the same point if and
only if one is obtained from the other by multiplying all the coordinates by the
same non-zero constant.

e When Z is not 0 the point represented is the point (X/Z, Y/Z) in the Euclidean
plane.

e When Z is 0 the point represented is a point at infinity.

e Note that the triple (0, 0, 0) is omitted and does not represent any point. The
origin is represented by (0, 0, 1).

In homogeneous coordinates, scaling doesn’t affect anything, i.e. (x,y,1) is congruent with
(wx, wy, w) for w € R # 0. This fits the our projection line model, since all points along
a projection line map to a single point q on the image. We can write what we want in
Equation 9.3 homogeneous coordinates,

. X 4 px f-x+z-pg
Q=(xyz) — qg=|gp, |~| fy+zpy (9.4)
1 z

and then we can write this as a matrix multiplication

Ix+zp, f 0 pe] [x
Q=[xy,2]' = |fy+zp,| = [0 [ p,| |y (9.5)
Z 0 0 1 Z
where we denote
f 0 p
K=10 f p, (9.6)
0 0 1

is called the camera calibration matrix or intrinsic parameter matrix. The param-
eters in K are called internal camera parameters.

48


https://en.wikipedia.org/wiki/Homogeneous_coordinates#Notation
https://en.wikipedia.org/wiki/Homogeneous_coordinates#Notation

Finally,

N wx . vy
K [x,y,z] = |wy| - qg= [ } — fy (9.7)
w Y Yy=7"2 Py

9.4 Camera Calibration Matrix

We presented that the Camera Calibration Matrix is denoted as K, and has values (this
first formulation assumes square pixels)

f 0 pe
K=10 f py (9.8)
0 0 1

It can be a little more complicated, as pixels may not be square, (different focal length in
x and y direction, denoted by f, and f, respectively.)

Je 0 pg
K=1{0 f, py (9.9)
0O 0 1

and there might be a skew angle 6 between x and y image axis

fe —fzcot® ps
K=10 f,/sinf p, (9.10)
0 0 1

9.5 Projection Properties
9.5.1 Many to One Projection

In the case of many to one projection, any points along same ray map to same point in
image. Particularly,

e Points always map to points, and

e lines usually, though not always, map to lines. (A line going through the principle
point maps to a point instead!)

e planes usually, though not always, map to planes. (A plane going through principal
point projects to line)

49

wait shouldn’t
this be: princi-
ple axis maps
to a point?



9.5.2 Vanishing Point

Parallel lines converge at a vanishing point. Each different direction in the world has its
own vanishing point. All lines in the same direction in 3D intersect at the same vanishing
point. Notice that this vanishing point is not necessarily inside the virtual image plane,
but parallel lines in the world always converge to the same vanishing point.

A line that passes through V with direction D can be written as

X=V+tD teR (9.11)
Then if we project it, we have
wx [0 pe Ve + 1Dy fVae + ftDy + paVa + tpa D
w 0 0 1 V.+1tD, V. +tD,
(9.12)

then we move infinitely far from the camera by taking ¢ — oo and compute z, y°-!

- fVe + ftDe + puVe + tpe Dz fDs + paD-

=1 9.13
r ti>oo V,+tD, D, ( )
y = lim fVy + Dy oy Ve 1 tpy Dz [ Dy 19y D (9.14)

t—o0 V,+tD, D,

Importantly, this solution is independent of V', meaning that all lines with direction D go
to this point.

*  Vanishing point can also be computed in another way. If we translate line with direction
D to the camera centre, the the intersection of the line with the virtual image plane is the
vanishing point corresponding to direction D!

We must also remember that vanishing points might not exist. In cases where lines parallel
to image plane are also parallel in the image, they intersect at infinity! Also, for lines in the
same 3D plane, the vanishing points lie on a line. We all it a vanishing line. The vanishing
line for the ground plane is a horizon line.

9.6 Camera Extrinsics

The world is not described in camera coordinates, it is described by yet another system
which is (Xworid, Yworids Zworld)- The camera is placed at location c. Suppose our point of
interest is (), then clearly () — ¢ makes the position relative to the camera. But the problem
is what is @ in camera’s coordinate system?

9lwhen t — o0, fVa,paVz, V. are all constants, and thus are small numbers. They don’t matter. Same
for the y ones.

50



Suppose u, v, w are three orthogonal directions of camera in room coordinate system. (much
like a basis for movements of the camera.) Our goal is to have a rotation matrix R, that
can take us from the world coordinate to the camera coordinate. Clearly the R is such
that R [u v w] =T and RR" =1I. Let

R=[u" v’ w'] € Msys3(R) (9.15)

Then, (X" Y' Z }T in camera coordinates is

X' X if
YN =R||Y|-c|=[R —Re|, (9.16)
A Z .

where [X Y Z 1] isinroom / world coordinates.

9.7 Projection Equations

The projection matrix P models the culmulativeeffect of all intrinsic and extrinsic param-
eters. We use homogenous coordinates for 2D and 3D:

ax X
Y
q= |ay| =P 7 (9.17)
“ 1
It can be computed as
f 0 ps 1 0 00
P=|0 f p,||0 100 [1;‘3*3 031“ ] [(I]M Ti“ ] (9.18)
00 1 0010 13 13
rotation translation
intrinsics K projection ~~
L
To get a point ¢ in the image plane, I need to compute
P(X,Y,z,1)" (9.19)

where P € Msy4(R). This gives me a 3 by 1 vector. Now I divide all coordinates with
the third coordinate (making the third coordinate equal to 1), and then drop the last
coordinate.

The projection matrix can be compactly written as

P=K[R — (9.20)

51



The (brutal) truth is in most cases you don’t have P at all, so you can’t really compute
any projections. When you have a calibrated camera, then someone typically gives you P.
And then projection is easy.

52



	Linear Filter
	Fourier Transform Overview
	Sinusoidal Waves
	Vector Forms
	Inner Product on Functions Space
	General Form (Periodic Function) - Fourier Series
	General Form

	Image Representation
	Image
	Image Coordinates
	Coloured Images
	Image Transformations

	Noise Reduction
	1-D Example
	2-D Case

	Correlation Defined
	General Moving Average
	General Filtering
	Notation
	Correlation - Vector Form
	Normalized Cross-correlation

	Boundary Effects
	Smoothing
	Uniform Smoothing
	Isotropic Gaussian Filter
	Non-isotropic Gaussian Filter

	Convolution
	Properties of Convolution
	Convolution w/ Fourier Transforms

	Separable Filters
	Isotropic Gaussian as Separable Filters
	Moving Average as Separable Filters
	Edge Detector Kernel as Separable Filters
	Separable-ness of Filters


	Edge Detection
	Characterization of Edges
	Insights
	Origin of Edges
	Characterizing Edges

	Convolution as Derivative - Measure of Rapid Change
	Canonical Finite Difference Filters

	Image Gradient
	Gradient Defined
	Edge Direction
	Gradient Direction
	Edge Strength

	Effects of Noise
	Overcoming Noisiness 
	Faster Method Through Conv / Corre
	Generalization: Derivative Theorem of Convolution
	Remark: on Gaussian Derivative Filters' Parameter

	Canny's Edge Detector
	Procedure
	Non-Maximum Suppression (Thick Edges Problem)
	Hysteresis Thresholding (Discontinuous Edges Problem)

	Laplacian of Gaussians: Another Approach to Edge Detection
	Auxiliaries
	Connection: Sobel Filter and Gaussian Blur


	Image Pyramids
	Image Sub-Sampling
	Naïve Solution
	Aliasing
	Nyquist Rate (Nyquist-Shannon Theorem)
	Gaussian Pre-Filtering
	Image Pyramids

	Image Up Sampling
	Naïve Solution
	1-D Signal Linear Interpolation
	1-D Linear Interpolation Via Convolution
	1-D Non-Linear Interpolations
	2-D Image Interpolation


	Interest (Key) Point Detection
	Review: Taylor Expansion
	The Problem and Goal
	Naïve Point Choosing Criteria

	Harris Corner Detector
	Second Moment Matrix / Structure Tensor
	Properties of Structure Tensor
	Weight Sum of Squared Difference Maximization
	Reverse Construction of Corners from WSSD Max Vals. 
	Harris Corner Detector (Harris and Stephens, 88')
	Shi and Tomas, 94'
	Trigges, 04'
	Brown et al, 05'


	Motion and Optical Flow
	Brightness Constancy Constraint
	Pitfall

	Ambiguities
	The Aperture Problem
	The Barber Pole Illusion

	Spatial Coherent Constraint: Solving Ambiguities
	Lucas-Kanade Equation: Least Squares Solution
	Connection: Second Moment Matrix
	Solvability Condition
	Best Case and Pitfalls
	Errors in Lukas-Kanade

	Iterative Refinement: Dealing w/ Larger Movements
	Coarse to Fine Optical Flow Estimation

	Scale Invariant Interest Point Detection
	Characteristics of Good Features
	Repeatability
	Saliency
	Compactness and Efficiency
	Locality

	Blob Detection
	The Goal: Blob Filter
	Mexican-hat Shaped Filter 1-D Intuition
	Laplacian of Gaussian Filter (2-D Formal)
	LoG and Derivative of Gaussian wrt Variance
	Difference of Gaussians
	Approximating Laplacian of Gaussian w/ Difference of Gaussians
	Applying Laplacian of Gaussian 1-D
	Characteristic Scale
	Applying Laplacian of Gaussian 2-D
	Lowe's Difference of Gaussian
	Other Interest Point Detectors


	Scale Invariant Feature Transform (SIFT)
	Step 1: Difference of Gaussians as Feature Detector
	Step 2: Extracting Feature Points
	Step 3: Gradient Magnitude and Orientation
	Step 4: Dominant Orientation Extraction
	Step 5: Computing the Feature Vector
	Achieving Rotation Invariance
	Achieving Illumination Independence

	Properties of SIFT
	PCA-SIFT
	Matching Local Descriptors

	Planar Objects Matching in New Viewpoints
	Review: Linear Transformations
	Properties of Linear Transformations

	Affine Transformations
	Properties of Affine Transformations
	Approximating View Point Changes
	Computing the Affine Transformation
	RANdom SAmple Consensus (RANSEC)


	Camera Models
	Pinhole Camera Model
	Camera / Image Coordinate System
	Projection
	Camera Calibration Matrix
	Projection Properties
	Many to One Projection
	Vanishing Point

	Camera Extrinsics
	Projection Equations


