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1 Set Theory, Limit and Continuity

1.1 Limits and Continuity

Notice that major portion of this part of note is available in a separate file1,
typeset-ted using one-Note prior to the existence of these notes. There is
one final (important) result in the limits part to be stated in this section.

Theorem: (Limit Existence, HW1.1). Consider the limit of the fol-
lowing flavour

lim
(x,y)→(0,0)

|x|r1 |y|r2
|x|s1 + |y|s2

where r1, r2, s1, s2 ∈ R>0. Then the limit exists, and is equal to zero if
r1
s1

+ r2
s2
> 1.

Definition: Continuity If S ⊆ Rn, then a function f : S → Rk is
continuous at a ∈ S if

∀ε > 0,∃δ > 0s.t.x ∈ S ∧ |x− a| < δ =⇒ |f(x)− f(a)| < ε

also, we say that f is continuous if f is continuous at every point in S. There
is an alternative way of defining the continuity, which is as follows: if a is a
point where it makes sense to talk about limx→a f(x), then

f : S → Rk is CTS at a ∈ S ⇐⇒ lim
x→a,x∈S

f(x) = f(a)

Theorem: (Properties of Continuity) Consider S ⊆ Rn,a ∈ S

1. A vector valued function f : S → Rk is CTS at a if and only if all of
its component real valued functions are CTS at a.

2. If two vector valued functions each are CTS at a, then so is their sum.

3. If two real valued functions f, g each are CTS at a, then so is their
product. In addition if g(a) 6= 0, then f/g is also CTS at a

4. If the vectors valued functions f is CTS at a, and g is CTS at f(a),
then so is their composition g ◦ f . Notice that here we are implicitly
assuming the two functions are compatible to each other in composi-
tion.

1see first two.pdf available in the same folder
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5. Elementary functions, such as trigonometric functions, trigonometric
inverses, polynomials, exponentials and logarithm are all continuous
on their domains.

Theorem: (Sets w/ Continuity) Assume that f is a function Rn → Rk.
Then, the following are equivalent

• f is continuous

• For every open set U ⊆ Rk, the set {x ∈ Rn : f(x) ∈ U} is open

• For every open set K ⊆ Rk, the set {x ∈ Rn : f(x) ∈ K} is closed

There is a big family of question that is based on this equivalence relation-
ship. Consider S = {x ∈ R3 : f(x) ∈ T}, T ⊆ domain of f . Then, using the
fact that f is CTS function, we can know that the set S is closed/open iff
the pre-image T is closed/open.

Recognizing Sets The general principle is: if any set is defined using
continuous functions (possibly more than one of them) and strict inequalities
(i.e., < or >) then we instantly recognize it as open. And if any set is
defined using continuous functions and non-strict inequalities (i.e., ≤ or ≥)
or equality, then we instantly recognize it as closed.

1.2 Sequences and Completeness

Theorem: (Bounded Sequence Theorem) Every bounded sequence
in Rn has a subsequence that converges to a limit.

Theorem. Let {aj}j ⊆ Rn be sequence, let L = (L1, ..., Ln) ∈ Rn, then

lim
j→∞

aj = L ⇐⇒ lim
j→∞

ajk = Lk for all k = 1, . . . , n

Theorem: (Completeness Axiom) Every bounded non-empty set of
real number has a least upper bound

Definitions: Upper Bound, Supremum

1. A number a is an upper bound for a set S ⊆ R if a ≥ x,∀x ∈ S

3



2. A number a is the least upper bound(supremum) for S if a is an upper
bound for S, and for every upper bound b for S, a ≤ b. We usually
denote the least upper bound with supS.

3. We have the same thing for inf S.

Theorem: (Monotone Sequence Theorem) Every bounded non-decreasing
sequence of real numbers converges to a limit.

Definition: Subsequence A subsequence of a sequence {aj}j≥j0 ⊆ Rn

is a new sequence denoted {akj}j where {kj} is an increasing sequence of
integers such that kj ≥ j0,∀j. Intuitively, we can think of this as “following
a pattern, we copy down only part of the original sequence to form a new
one”.

Theorem: (Convergence of Subsequence) If {aj}j ⊆ Rn is a se-
quence that is convergent, then any subsequence of {aj}j converges to the
same limit. Notice that a catch here is that not any subset qualifies for a
subsequence, as stated above, their indices in the original sequence has to
follow some pattern, i.e. they themselves have to form a sequence.

1.3 Compactness and Applications

Definition: Compactness A set S ⊆ Rn is said to be compact if every
sequence is S has a subsequence that converges to a limit in S.

Theorem: (Bolzano-Weierstrass) Let S be a subset of the n dimen-
sional Euclidean space Rn, then S is compact if and only if S is closed and
bounded. Remark: In fact, compactness was a generalization of closed and
bounded in spaces other than Rn.

Proposition. If {xj}j is a convergent sequence in a closed set S ⊆ Rn,
then the limit of the sequence must belong to S.

Theorem: (EVT) Assume that K is a compact subset of Rn, and that
f : K → R is continuous. Then

the set {f(x) : x ∈ K} is compact
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and there exists x∗ and x∗ in K such that

f(x∗) = sup{f(x) : x ∈ K} ∧ f(x∗) = inf{f(x) : x ∈ K}

When we have x∗ as above, we say that f attains its supremum, and when
there exists x∗, we that f attains its infimum. This theorem is of crucial
importance in circumstances of optimization problems, since we usually have
to know that some solution exists in order to have our calculations make
sense.

Definition: Uniform Continuity A function f : S ⊆ Rn → Rk is uni-
formly continuous if

∀ε > 0, ∃δ > 0 such that
x,y ∈ S and
|x− y| < δ

}
=⇒ |f(x)− f(y)| < ε.

Notice that this is different from the definition of the normal continuity. In
naive words, if a function is continuous, then at every value it can take,
there would be some box (whose measures could depend on the value) that
captures the function in the sense that the function doesn’t escape. However,
here we lost the dependence of the input, so there has to be some “box” that
works everywhere.

Checking Uniform Continuity The epsilon-delta definition, although
is rigorous, could be sometimes tedious to check, we develop the following
rule: Let f be a function that is continuous on a closed interval [a, b] ⊆ R
and differentiable on the open interval (a, b). If there exists some number
M > 0 such that |f ′(x)| ≤M,∀x ∈ (a, b), then f is continuous on [a, b].

Theorem: (Uniform CTS w/ Compactness) If K is a compact subset
of Rn and f : K → Rk is CTS, then f is uniformly CTS on K.

1.4 The Intermediate Value Theorem

Definition: Path-Connected A set S ⊆ Rn is path-connected if, for
every pair of x,y ∈ S,

∃ CTS γ : [0, 1]→ S, s.t.γ(0) = x ∧ γ(1) = y

such that γ(s) ∈ S, ∀s ∈ [0, 1]

5



Theorem: (IVT) Assume that S is path-connected subset of Rn and
that f : S → R is CTS. If a,b are points in S, and either f(a) < t < f(b),
or f(b) < t < f(a), then there exists a point c ∈ S, s.t. f(c) = t.

2 Differential Calculus

2.1 Differentiation of Real-Fcns

Definition: 1-Var Diff-able The following are equivalent definitions:

lim
h→0

f(x+ h)− f(x)

h
= m

⇐⇒ lim
h→0

f(x+ h)− f(x)−mh
h

= 0

⇐⇒ E(h) := f(x+ h)− f(x)−mh satisfies lim
h→0

E(h)

h
= 0

⇐⇒ f(x+ h) = f(x) +mh+ E(h) and lim
h→0

E(h)

h
= 0

Definition: Mult-Var Diff-able Assume that f : S ⊆ Rn → R, where
S is an open subset. We say that f is differentiable at x ∈ S if there exists
m ∈ Rn such that

lim
h→0

f(x + h)− f(x)−mh

|h|
= 0

and when this holds, we define ∇f(x) = m. Alternatively, we sat that f
is differentiable at x if there exists m such that

f(x + h) = f(x) + m · h + E(h), where lim
h→0

E(h

|h|
= 0

when this holds, we also define ∇f(x) = m.

Theorem: (Diff-able Implies CTS) Assume that f : S → R, where S
is an open subset of Rn, and that x ∈ S. If f is differentiable at x, then f
is continuous at x.

Definition: Partial Derivative Recall that we have defined ej to be the
unit vector in Rn in the j-th coordinate direction. If f is a function defined
on an open subset S ⊆ Rn, then at a point x ∈ S, we define

∂f

∂xj
(x) := lim

h→0

f(x + hej)− f(x)

h
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Computationally, this could be done by treating other variables as constants
and proceed as in first year calculus.

Theorem: (Diff-able Implies Partials Exist) Let f be a function
S → R, where S is an open subset of Rn. If f is differentiable at a point
x ∈ S, then ∂f

∂xj
(x) exists ∀j = 1, ..., n, and in addition,

∇f(x) =

(
∂f

∂x1
, ...,

∂f

∂xn

)
(x)

However, do notice that the converse is not true. It could certainly be
the case that all partials exist at some point at where the function itself is
dis-continuous.

Theorem: (CTS Partials Implies Diff-able) Assume f is a function
S → R for some open S ⊆ Rn. If all partial derivatives of f exists and are
CTS at every point of S, then f is differentiable at every point of S.

Definition: Diff Class A function f : S → R is said to be of class C1
if all partial derivatives of f exist and are continuous at every point of S.
(Notice that this is stronger than C0, which is just being continuous itself.)

Theorem: (Directional Derivatives) If f is differentiable at a point x,
then ∂uf(x) exists for every unit vector u ∈ Rn, and moreover

∂uf(x) = u · ∇f(x)

Theorem: (Fastest Increase, Fundamental Principle) Assume that
S is an open subset of Rn and that f : S → R is differentiable. At any point
x ∈ S, the direction of most rapid increase u∗ is the vector such that

∂u∗f(x) = max{∂uf(x) : u is some unit vec}

To save ourselves the time to check these conditions we develop the following
formulas:

1. If ∇f(x) = 0, then ∂uf(x) = 0,∀u, so every unit vector maximizes
and minimizes ∂uf(x)

2. If ∇f(x) 6= 0, then the directional derivative is maximized at

u∗ =
∇f(x)

|∇f(x)|
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2.2 Differentiation of Vec-Fcns

Definition: Jacobian Derivative Assume that S is an open subset of
Rn. Given a function f : S → Rm we say that f is differentiable at a point
a ∈ S if these exists a m × n matrix M such that the familiar definition
holds:

f(a + h) = f(a) +Mh + E(h), where lim
h→0

E(h)

|h|
= 0 ∈ Rm

when this holds, we say that M is the derivative of f at a, and we write
M = Df(a).

Theorem: (Jacobian Matrix) Suppose that S is an open subset of Rn.
Then a function f : S → Rm is differentiable at a point a ∈ S if and only
if the component functions fj are differentiable at a for every j = 1, ...,m.
Moreover, the Jacobian Matrix could be calculated by

Df(a) =


∂1f1 · · · ∂nf1
∂1f2 · · · ∂nf2

...
. . .

...
∂1fm · · · ∂nfm


Furthermore, if all partial derivatives ∂ifj(i = 1, ..., n ∧ j = 1, ...,m) exist
and are CTS in S, then f is differentiable in S.

Definition: Differential Given a differentiable function f : S → R,
where S is an open subset of Rn, at a point a ∈ S we define the differential
linear map Rn → R by

df |a(h) = ∇f(a) · h

The most common notation for differential would be

df =
∂f

∂x1
dx1 + ...+

∂f

∂xn
dxn

Linear approximation using the differentials: The definition of the
differential implies that if f is differentiable at a, then

f(a + h) ∼= f(a) + df |a(h) for h small
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2.3 The Chain Rule

Theorem: (Chain Rule) Assume that S and T are open subsets of Rn

and Rm, and that we are giving functions g : S → Rm and f : T → Rl.
Assume also that a ∈ S is a point such that g(a) ∈ T ; thus f ◦ g(x) is
well-defined for x close to a. If g is differentiable at a and f is differentiable
at g(a), the composite function f ◦ g is differentiable at a, and

D(f ◦ g)(a) = Df(g(a)) Dg(a)

Notice that although there are infinitely many cases that some people like
to remember, using matrix multiplication will always work. So we will save
ourselves that time.

Tangent Plane to Level Set Suppose S is an open subset of R3 and
that f : S → R is a function that is differentiable at a point a ∈ S. Assume
also that ∇f(a) 6= 0. Consider C to be the level set of f that passes through
a. Define

The tangent plane to C at a := {x ∈ R3 : (x− a) · ∇f(a) = 0}

This may seem a bit abstract to apply, so we shall see this in action through
an example. Question: “Find the tangent plane to the surface C = {x ∈
R3 : x2−2xy+4yz−z2 = 2}, @a = (1, 1, 1) ∈ R3”. Notice that C is the level
set of F (x, y, z) = x2 − 2xy + 4z − z2 at 2. So applying the formula above
yields us that the tangent plane is defined by {(x, y, z) ∈ R3 : y + z = 2}

2.4 The Mean Value Theorem

Theorem: (MVT) Assume that f is real-valued function of class C1
defined on an open set S ⊆ Rn. For two points a,b ∈ S, let La,b denote
the line segment that connects them. if La,b ⊆ S, then there exists c ∈ La,b

such that
f(b)− f(a) = (b− a) · ∇f(c)

Definition: Convex A set S ⊆ Rn is said to be convex if ∀a,b ∈
S,La,b ⊆ S. That is, formally

∀a,b ∈ S,∀S ∈ [0, 1], sb + (1− s)a ∈ S

We like sets with this property in this context since we want the geometric
assumption of MVT to be satisfied. Indeed, convex-ness guarantees “straight
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line connected-ness”.
Some Important Results:

1. The intersection of convex sets is convex, while the union of convex
sets need not be convex.

2. If a set in Rn qualifies for a subspace, then it is convex. In particular,
the Kernel and Image are convex.

3. If L : Rn → Rm is a function of the form L(x) = Ax + b, where A is
an m× n matrix and b ∈ Rm and if S is convex subset of Rn, then

L(S) := {L(x) : x ∈ S} is convex

this means that the Im(L|S) is convex.

Theorem: (MVT w/ Cauchy) Assume that S is an open, convex subset
of Rn and that f : Rn → R is a function that is differentiable in S, and
moreover that there exists M ≥ 0 such that |∇f(x)| ≤ M, ∀x ∈ S. Then
for every a,b ∈ S,

|f(b)− f(a)| ≤M |b− a|

notice that this is a standard consequence of Cauchy Inequality with appli-
cation to the MVT.

Theorem: (Everywhere Diminishing Gradient Implies Constant
Fcn) Assume that S is open, convex subset of Rn and that f : Rn → R
is a function that is differentiable in S. If ∇f(x) = 0,∀x ∈ S, then f is
constant on S.

Theorem: (Stronger Version Of Above) Assume that S is open,
path-connected subset of Rn and that f : Rn → R is a function that
is differentiable in S. If ∇f(x) = 0, ∀x ∈ S, then f is constant on S.

2.5 Higher Order Derivatives

Definition: Fcns Of Class Ck We say that f is of class Ck if all the
k-th order partial derivatives exist and are CTS everywhere in S, where f
is defined.
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Theorem: (Clairaut, Second Derivative) Assume that S is an open
subset of Rn. If f : S → R is C2(Important!), then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,∀i, j ∈ {1, ..., n} everywhere in S

Theorem: (Clairaut, General) Assume that S is an open subset of Rn

and that f : S → R is of class Ck. For any integers i1, ..., ik between 1 and
n, if j1, ..., jk is a reordering of the i’s, then

∂

∂xik
· · · ∂

∂xi1
f =

∂

∂xjk
· · · ∂

∂xj1
f

everywhere in S.

2.6 Taylor’s Theorem

Definition: Hessian Matrix The Hessian Matrix of a real valued func-
tion f at a, denoted H(a), is the (square) box of second derivatives of f
whose (i, j)-th entry is ∂i∂jf(a).

Proposition: Quadratic Taylor Expansion We have

Pa,2(h) = f(a) +∇f(a) · h +
1

2
(H(a)h) · h

where we remember if we wish our result to be in terms of x rather than h,
we substitute in h = x− a.

Theorem: Quadratic Taylor’s Theorem Assume that S ⊆ Rn is an
open set and that f : S → R is a function of class C2 on S. Then for
a ∈ S,h ∈ Rn such that the line segment connecting a and a = h is
contained in S, there exists θ ∈ (0, 1) such that

f(a + h) = f(a) +∇f(a) · h +
1

2
(H(a + θh)h) · h

holds, then as a result

lim
h→0

Ra,2(h)

|h|2
= 0 whereRa,2(h) = f(a + h)− Pa,2(h)
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2.7 Critical Points

Procedure: Classify Critical Points In solving a question of f : R2 →
R we could use the following “quick check” approach:

1. Calculate the gradient of F , equating it to zero to find the critical
points

2. Calculate the Hessian of F , find the corresponding matrices for each
critical points, where the Hessian is defined as

H(f) =

[
∂xxf ∂xyf = ∂yxf

∂xyf = ∂yxf ∂yyf

]
3. Calculate the determinant of the hessian, and there are the following

cases to consider

(a) detH < 0, then sig(H) = (1, 1) and the point is a saddle point

(b) detH > 0, then

i. tr(H) < 0 =⇒ sig(H) = (2, 0) and the point is a local
minimum

ii. tr(H) > 0 =⇒ sig(H) = (0, 2) and the point is a local
maximum

(c) detH = 0, then the test is inconclusive. We have to do this case
by starring at it. (This is a degenerate point, defined below)

(Non)-Degenerateness If f is a C2 function and a is a critical point of
f , we say that a critical point is degenerate if detH(a) = 0, and non-
degenerate otherwise.
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