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1 Preliminaries

1.1 Distribution Theories

• Suppose Y1, Y2, . . . , Yn
iid∼ N(µ, σ2), and consider s2 = 1

n−1

∑n
i=1

(
Yi − Ȳ

)2
. Then,

(n− 1)s2

σ2
∼ χ2

(df=n−1)

• Under the Normal Error SLR model, where ei
iid∼ N

(
0, σ2

)
, and S2 = 1

n−2

∑n
i=1 ê2

i =

1
n−2

∑n
i=1

(
Yi − Ŷi

)2

(Different from above!). Then,

(n− 2)S2

σ2
=

(n− 2)S2/SXX

σ2/SXX
=

n∑
i=1

(
Yi − Ŷi
σ

)2

∼ χ2
(df=n−2)

• Let Z ∼ N(0, 1), and V ∼ χ2
(df=v). Assume further that Z ⊥⊥ V , then

Z√
V/v

∼ t(df=v)

• Under the Normal Error SLR model,

β̂1 − β1√
S2

SXX

∼ t(df=n−2)

• Suppose V ∼ χ2
(df=v), W ∼ χ

2
(df=w) and V ⊥⊥W . Then,

V/v

W/w
∼ F(v,w)

• Suppose Q ∼ t(df=v), then

Q2 ∼ F(1,v)

1.2 Matrix Calculus

Manuel to matrix calculus provided by professor: http://biostat.mc.vanderbilt.edu/wiki/

pub/Main/CourseBios312/chap2.pdf

1.2.1 Lemma I (Real Valued Fcn Matrix Differentiation)

If θ′ = (θ1, θ2, . . . , θk) and c′ = (c1, c2, . . . , ck) is a vector of constant, such that

f(θ) = c′θ = θ′c =
∑
i

ciθi ∈ R

is a scalar, then
∂f(θ)

∂θ
= c

https://tingfengx.github.io/uoftnotes/ Page 4
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1.2.2 Lemma II (Symmetric Quadratic Form)

Let A be a k × k symmetric square matrix. Suppose f(θ) = θ′Aθ. Then,

∂f(θ)

∂θ
= 2Aθ

1.2.3 Lemma II (General Quadratic Form)

Let A be a k × k square matrix. Suppose f(θ) = θ′Aθ. Then, as the general case for the above,

∂f(θ)

∂θ
= θ′(A′ + A)

1.2.4 Matrix Idempotency

We say that a matrix A is idempotent if and only if A2 = AA = A. It is worth mentioning that
projection matrices are idempotent, i.e. you can only project once and projecting the second time
makes no change to the already projected result.

2 Simple Linear Regression

2.1 Ordinary Least Square

2.1.1 Simple Linear Regression Models

The cost function to use in this case is the RSS, defined as

RSS =

n∑
i=1

ê2
i =

n∑
i=1

(yi − ŷi)2
=

n∑
i=1

(yi − b0 − b1xi)2

We will now derive the OLS estimators as follows.

Derivatives
∂ RSS

∂b0
= −2

n∑
i=1

(yi − b0 − b1xi) = 0

∂ RSS

∂b1
= −2

n∑
i=1

xi (yi − b0 − b1xi) = 0

Normal Equations are obtained by rearranging

n∑
i=1

yi = b0n+ b1

n∑
i=1

xi (1)

n∑
i=1

xiyi = b0

n∑
i=1

xi + b1

n∑
i=1

x2
i (2)
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OLS Regressor
β̂0 = ȳ − β̂1x̄

β̂1 =

∑n
i=1 xiyi − nxy∑n
i=1 x

2
i − nx̄2

=

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)
2 =

SXY

SXX

Estimating Variance of Error Term (Using Residuals)

Unbiased Estimator σ̂2 = S2 =
RSS

n− 2
=

1

n− 2

n∑
i=1

ê2
i

Notes

• ¯̂e = 0, since
∑
êi = 0 as the least square estimates minimizes RSS. (This is like a minimization

goal where derivatives are taken w.r.t êi.)

• S2 has n− 2 degrees of freedom since we have estimated two parameters, namely β0 and β1.

2.2 Inferences on Slope and Intercept

2.2.1 Inference Assumptions

The following assumptions need to be made in order to preform inference

• Y is explained by x through a simple linear regression model

Yi = β0 + β1xi + ei(i = 1, . . . , n), i.e., E (Y |X = xi) = β0 + β1xi

• Independent Errors, ei ⊥⊥ ej ,∀i 6= j

• Homoscedasticity, Var(ei) = σ2,∀i

• Normal Error: e|X ∼ N
(
0, σ2

)
2.2.2 Inference of Slope

Distribution

β̂1|X ∼ N
(
β1,

σ2

SXX

)
Standardized Test Statistic (Var Known)

Z =
β̂1 − β1

σ/
√
SXX

∼ N(0, 1)

Test Statistic (Var Unknown) Recall that degrees of freedom = sample size - number of mean
parameters estimated. Then,

T =
β̂1 − β1

S/
√
SXX

=
β̂1 − β1

SE
(
β̂1

) ∼ t(df=n−2) where S2 =

∑
i ê

2
i

n− 2
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Confidence Interval (Var Unknown) The 100(1− α)% CI is

CI ← β̂1 ± t∗(α/2,df=n−2) × SE(β̂1) ≡ β̂1 ± t∗(α/2,df=n−2)

S√
SXX

Distribution Proof Recall OLS regressor for β1 is

β̂1 =

n∑
i=1

ciyi where ci =
xix

SXX

The expectation could be derived as1

E
(
β̂1|X

)
= E

[
n∑
i=1

ciyi|X = xi

]

=

n∑
i=1

ciE [yi|X = xi]

=

n∑
i=1

ci (β0 + β1xi)

= β0

n∑
i=1

ci + β1

n∑
i=1

cixi

= β0

n∑
i=1

{
xi − x̄
SXX

}
+ β1

n∑
i=1

{
xi − x̄
SXX

}
xi

= β1

and the variance

Var
(
β̂1|X

)
= Var

[
n∑
i=1

ciyi|X = xi

]

=

n∑
i=1

c2i Var (yi|X = xi)

= σ2
n∑
i=1

c2i

= σ2
n∑
i=1

{
xi − x̄
SXX

}2

=
σ2

SXX

Then, since ei|X are normally distributed, then yi = β0 + β1xi + ei, Yi|X is normally distributed.

Since β̂1|X is a linear combination of yi’s , β̂1|X is normally distributed. Q.E .D.†
1using the fact that

∑n
i=1 (xi − x̄) = 0 and

∑n
i=1 (xi − x̄)xi =

∑n
i=1 x

2
i − nx̄2 = SXX
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t-test using PMCC on Bi-variate Normal Recall that

ρ̂MLE = r =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2∑n

i=1 (yi − ȳ)
2

=
SXY√

SXX SY Y

Use the null hypothesis that H0 : ρXY = 0 and alternative H1 : ρXY 6= 0, then

T =
r
√
n− 2√

1− r2
=

b1√
S2

SXX

∼ t(df=n−2)

2.2.3 Inference of Intercept

Distribution

β̂0|X ∼ N
(
β0, σ

2

(
1

n
+

x̄2

SXX

))
Standardized Test Statistic (Var Known)

Z =
β̂0 − β0

σ
√

1
n + x̄2

SXX

∼ N(0, 1)

Test Statistic (Var Unknown)

Z =
β̂0 − β0

S
√

1
n + x̄2

SXX

=
β̂0 − β0

SE
(
β̂0

) ∼ t(df=n−2) where S2 =

∑
i ê

2
i

n− 2

Confidence Interval (Var Unknown)

CI ← β̂0 ± t∗()α/2,df=n−2) × SE(β̂0) ≡ β̂0 ± t∗(α/2,df=n−2)S

√
1

n
+

x̄2

SXX

Distribution Proof Recall that the OLS regressor of β0 is given by

β̂0 = ȳ − β̂1x̄

The expectation,

E
(
β̂0|X

)
= E(ȳ|X)− E

(
β̂1|X

)
x̄

=
1

n

n∑
i=1

E (yi|X = xi)− β1x̄

=
1

n

n∑
i=1

E (β0 + β1xi + ei)− β1x̄

= β0 + β1
1

n

n∑
i=1

xi − β1x̄

= β0 + β1x̄− β1x̄ = β0
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and the variance,

Var
(
β̂0|X

)
= Var

(
ȳ − β̂1x̄|X

)
= Var(ȳ|X) + x̄2 Var

(
β̂1|X

)
− 2x̄Cov

(
ȳ, β̂1|X

)
where

Var(ȳ|X) = Var

(
1

n

n∑
i=1

yi|X = xi

)
=
nσ2

n2
=
σ2

n

Var
(
β̂1|X

)
=

σ2

SXX

Cov
(
ȳ, β̂1|X

)
= Cov

(
1

n

n∑
i=1

yi,

n∑
i=1

ciyi

)
=

1

n

n∑
i=1

ci Cov (yi, yi) =
σ2

n

n∑
i=1

ci = 0

Thus,

Var
(
β̂0|X

)
= σ2

(
1

n
+

x̄2

SXX

)
Q.E .D.†

2.3 CI for Unknown Population Regression Line

Goal: Find a confidence interval for a unkown population regression line at X = x∗. The population
regression line is given by

E (Y |X = x∗) = β0 + β1x
∗

Distribution To get an estimate of the y value at X = x∗, we can use the regression output
(evaluate the estimated regression line at X = x∗)

ŷ∗ = β̂0 + β̂1x
∗

where we claim it follows the distribution

ŷ∗ = ŷ|X = x∗ ∼ N

(
β0 + β1x

∗, σ2

(
1

n
+

(x∗ − x̄)
2

SXX

))

Proof of Distribution The expectation follows directly from definition, and we will now show

that the variance has the claimed value. Notice that Var(β̂0|X) = σ2
(

1
n + x̄2

SXX

)
, Var(β̂1|X) =

σ2

SXX and Cov(β̂0, β̂1|X) = −x̄σ2

SXX , then

Var(ŷ|X = x∗) = Var(β̂0 + β̂1x
∗|X = x∗)

= Var(β̂0|X = x∗) + Var(β̂1x
∗|X = x∗) + 2Cov(β̂1, β̂1x

∗|X = x∗)

= σ2

(
1

n
+

x̄2

SXX

)
+ (x∗)2 σ2

SXX
+ 2x∗

(
−x̄σ2

SXX

)
= σ2

(
1

n
+

(x∗ − x̄)
2

SXX

)
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Q.E .D.†

Standardized Test Statistic (Var Known)

Z =
ŷ∗ − (β0 + β1x

∗)

σ

√(
1
n + (x∗−x̄)2

SXX

) ∼ N(0, 1)

Test Statistic (Var Known)

T =
ŷ∗ − (β0 + β1x

∗)

S

√(
1
n + (x∗−x̄)2

SXX

) ∼ t(df=n−2) where S2 =

∑
i ê

2
i

n− 2

Confidence Interval A 100(1− α)% CI for E (Y |X = x∗) = β0 + β1x
∗ is given by

CI ← ŷ∗ ± t∗(α/2,df=n−2)S

√√√√( 1

n
+

(x∗ − x̄)
2

SXX

)

≡ β̂0 + β̂1x
∗ ± t∗(α/2,df=n−2)S

√√√√( 1

n
+

(x∗ − x̄)
2

SXX

)

Do note that this is only valid for x∗ values in the range of the original data values of X. Avoid
extrapolation.

2.4 Prediction Intervals for Actual Value of Y

Goal Find a prediction interval for the actual value of Y at x∗, a given value of X.

Important Notes

• E(Y |X = x∗), the expected value or average value of Y for a given value x∗ of X, is what
one would expect Y to be in the long run when X = x∗. E(Y |X = x∗) is therefore a fixed
but unknown quantity whereas Y can take a number of values when X = x∗.

• E(Y |X = x∗), the value of the regression line at X = x∗, is entirely different from Y ∗, a
single value of Y when X = x∗. In particular, Y ∗ need not lie on the population regression
line.

• A confidence interval is always reported for a parameter (e.g., E(Y |X = x∗) = b0 + b1x
∗) and

a prediction interval is reported for the value of a random variable (e.g., Y ∗).

Difference Between CI and PI (My Thoughts) The intrinsic difference is that: The CI we
found above for E(Y |X = x∗) is a CI for a fixed value. We are trying to find, in the long run where
can we expect the regression line to lie given infinite samples. However, PI is trying to report for a
specific value, possibly a not-already-observed new value, what is the range that it may appear in.
PI captures more variability.
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Distribution

Y ∗ − ŷ∗ ∼ N

(
0, σ2

[
1 +

1

n
+

(x∗ − x̄)
2

SXX

])

Test Statistic (Var Unknown)

T =
Y ∗ − ŷ∗

S

√(
1 + 1

n + (x∗−x̄)2

SXX

) ∼ t(df=n−2)

Derivation of Distribution We base our prediction of Y at X = x∗ (which is Y ∗) on

ŷ∗ = β̂0 + β̂1x
∗

The error (deviation, to be precise) of our prediction is

Y ∗ − ŷ∗ = β0 + β1x
∗ + e∗ − ŷ∗ = (E (Y |X = x∗)− ŷ∗) + e∗

that is, the deviation between E(Y |X = x∗) and y∗ plus the random fluctuation e∗ (which represents
the deviation of Y ∗ from E(Y |X = x∗)). Thus the variability in the error for predicting a single
value of Y will exceed the variability for estimating the expected value of Y (because of the random
error e∗). We have

E (Y ∗ − ŷ∗) = E (Y − ŷ|X = x∗) = 0

and

Var (Y ∗ − ŷ∗) = Var (Y − ŷ|X = x∗) = σ2

[
1 +

1

n
+

(x∗ − x̄)
2

SXX

]

Prediction Interval A 100(1−α)% prediction interval for Y ∗ (the value of Y at X = x∗ is given
by)

PI ← ŷ∗ ± t(α/2,df=n−2)S

√√√√(1 +
1

n
+

(x∗ − x̄)
2

SXX

)

≡ β̂0 + β̂1x
∗ ± t(α/2,df=n−2)S

√√√√(1 +
1

n
+

(x∗ − x̄)
2

SXX

)

2.5 Analysis of Variance (ANOVA)

2.5.1 Sum of Squares Decomposition

Define Total Sample Variability

SST = SY Y =

n∑
i

(yi − ȳ)
2
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and recall the familiar residual squared sum (Unexplained (or error) variability)

RSS =

n∑
i

(yi − ŷi)2

and we define (Sum of Squares explained by the regression model)

SSreg =

n∑
i

(ŷi − ȳ)
2

Then, the decomposition is
SST = RSS + SSreg

2.5.2 Test for Zero Slope

t-test Note that for SLR, this is equivalent to the F-test outlined below. Consider the null
H0 : β1 = 0 against alternative H1 : β1 6= 0, then

T =
β̂1 − 0

se
(
β̂1

) =
β̂1 − 0

S/
√
SXX

H0∼ t(df=n−2)

This is just a specific application of the general t-test that we mentioned earlier, not very interesting.

F -test Assume that ei ⊥⊥ ej ,∀i 6= j ∧ ei ∼ N(0, σ2),∀i. Consider the null H0 : β1 = 0 against
alternative H1 : β1 6= 0, then

F =
SSreg /1

RSS /(n− 2)

H0∼ F1,n−2

2.5.3 Coefficient of Determination

The Coefficient of Determination (R2) of a regression line is defined as the proportion of the total
sample variability in the Y ’s explained by the regression model, that is

R2 =
SSreg

SST
= 1− RSS

SST

2.5.4 The ANOVA Table

The above F -test, as well as the sum of squares decomposition, could be summarized using the
following handy table.

Source of Variation df SS MS = SS/df F

Regression 1 SSreg SSreg/1 F = SSreg/1
RSS/(n−2)

Residual n− 2 RSS RSS/(n− 2)
Total n− 1 SST
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3 Diagnostics and Transformations for SLR

3.1 Valid and Invalid Data

3.1.1 Residuals

One tool that we can use to validate a regression model is one or more plots of residuals (or
standardized residuals). These plots will enable us to assess visually whether an appropriate model
has been fit to the data no matter how many predictor variables are used.

Expected Behaviour We expect that the residual graph to have no discern-able pattern and
centred at some value (0 in the case of standardized residual). Patterns such as curves, skewness
et cetra indicates non-normal residuals. More on this in the below section.

3.1.2 Reading Residual Plots

Criterion One way of checking whether a valid simple linear regression model has been fit is to
plot residuals versus x and look for patterns. If no pattern is found then this indicates that the
model provides an adequate summary of the data, i.e., is a valid model. If a pattern is found then
the shape of the pattern provides information on the function of x that is missing from the model.

Rationale Suppose that the true model is a straight line (which we never know) defined as

Yi = E (Yi|Xi = xi) + ei = β0 + β1xi + ei (3)

where
ei = Random error on Yi and E(ei) = 0

and we fit a regression line
ŷi = β̂0 + β̂1xi

Under the assumption that our regression line is very close to the true model, i.e. β0 ≈ b0 and
β1 ≈ b1), we see

êi = yi − ŷi
= β0 + β1xi + ei − β̂0 − β̂1xi

=
(
β0 − β̂0

)
+
(
β1 − β̂1

)
xi + ei

≈ ei

which means that our residuals resembles the random error!

3.2 Regression Diagnostics

Categorization

• X-Direction Outlier, i.e. Leverage Point: Away from the bulk of data in the x-direction.
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– Good: Not much change after removing the data point, i.e. the data point originally was
quite close to the regression line although away from the bulk of data in the x direction.
“A good leverage point is a leverage point which is NOT also an outlier.”

– Bad, Influential Point: If its Y -value does not follow the pattern set by the other
data points, i.e. a bad leverage point is a leverage point which is also an outlier.

• Y-Direction Outlier Trait: large residuals

3.2.1 Leverage Point

Defining The Hat The hat came from yet another representation of the ŷi. Recall that ŷi =
β̂0 + β̂1xi, where β̂0 = ȳ − β̂1x̄, β̂1 =

∑n
j=1 cjyj and cj =

xj−x̄
SXX . Then we have

ŷi = ȳ − β̂1x̄+ β̂1xi = ȳ + β̂1 (xi − x̄)

=
1

n

n∑
j=1

yj +

n∑
j=1

(xj − x̄)

SXX
yj (xi − x̄)

=

n∑
j=1

[
1

n
+

(xi − x̄) (xj − x̄)

SXX

]
yj =

n∑
j=1

hijyj

where we define

hij =

[
1

n
+

(xi − x̄) (xj − x̄)

SXX

]
Property of The Hat Recall that

∑n
j=1 [xj − x̄] = nx̄− nx̄ = 0, then

n∑
j=1

hij =

n∑
j=1

[
1

n
+

(xi − x̄) (xj − x̄)

SXX

]
=
n

n
+

(xi − x̄)

SXX

n∑
j=1

[xj − x̄] = 1

Thus,

ŷi = hiiyi +
∑
j 6=i

hijyj where hii =
1

n
+

(xi − x̄)
2∑n

j=1 (xj − x̄)
2

Defining Leverage The term hii = 1
n + (xi−x̄)2∑n

j=1(xj−x̄)2
above is commonly known as the leverage

of the ith data point. Notice the following in the definition of the leverage hii

• The second term measures the proportion, in terms of squared deviation in x-direction over
sum of square of total deviation in x-direction, of the i-th data point’s deviation. When
the second term tends to 1, meaning that i-th data point is some extreme outlier in the
x-direction, then hii would close to one, signifying the ‘leverage’-ness.

• Recall that
∑n
j=1 hij = 1, then when hii ∼= 1, hij → 0 and

ŷi = 1× yi + other terms ∼= yi

which means ŷi will be very close to yi, regardless of the rest dataset.

• A point of high leverage (or a leverage point) can be found by looking at just the values of
the x’s and not at the values of the y’s
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Average of Leverage For simple linear regression,

average (hii) =
1

n

n∑
i=1

hii =
2

n

Identifying Leverage Rule: xi is a high leverage (i.e., a leverage point) in a SLR model if

hii > 2× average (hii) = 2× 2/n = 4/n

Dealing with ‘Bad’ Leverage

• Remove invalid data points; Question the validity of the data points corresponding to
bad leverage points, that is: Are these data points unusual or different in some way from the
rest of the data? If so, consider removing these points and refitting the model without them.

• Fit a different regression model; Question the validity of the regression model that
has been fitted, that is: Has an incorrect model been fitted to the data? If so, consider
trying a different model by including extra predictor variables (e.g., polynomial terms) or by
transforming Y and/or x (which is considered later in this chapter).

3.2.2 Standardized Residuals

Problem of Non-constant Variance Recall that

hij =
1

n
+

(xi − x̄) (xj − x̄)∑n
j=1 (xj − x̄)

2 =
1

n
+

(xi − x̄) (xj − x̄)

SXX

and (we will show this later)
Var (êi) = σ2 [1− hii]

which is indeed non-constant for different data points. When hii ∼= 1 (hii is very close to 1), the
i-th data point is a leverage point and

Var(êi) = σ2 [1− hii] ≈ 0 and ŷi ∼= yi

The above results intuitively makes sense: When i-th data point is a leverage, êi will be small and
it does not vary much (data point close to the estimated regression line).

Derivation of Residual Variance (Not Important) Recall that

ŷi = hiiyi +
∑
j 6=i

hijyj where hij =
1

n
+

(xi − x̄) (xj − x̄)∑n
j=1 (xj − x̄)

2 =
1

n
+

(xi − x̄) (xj − x̄)

SXX

Then,

êi = yi − ŷi = yi − hiiyi −
∑
j 6=i

hijyj = (1− hii) yi −
∑
j 6=i

hijyj
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Hence,

Var (êi) = Var

(1− hii) yi −
∑
j 6=i

hijyj


= (1− hii)2

σ2 +
∑
j 6=i

h2
ijσ

2

= σ2

1− 2hii + h2
ii +

∑
j 6=i

h2
ij


= σ2

1− 2hii +
∑
j

h2
ij


Notice that

n∑
j=1

h2
ij =

n∑
j=1

[
1

n
+

(xi − x̄) (xj − x̄)

SXX

]2

=
1

n
+ 2

n∑
j=1

1

n
× (xi − x̄) (xj − x̄)

SXX
+

n∑
j=1

(xi − x̄)
2

(xj − x̄)
2

SXX2

=
1

n
+ 0 +

(xi − x̄)
2

SXX
= hii

So,
Var (êi) = σ2 [1− 2hii + hii] = σ2 [1− hii]

and

Var (ŷi) = Var

 n∑
j=1

hijyj

 =
∑
j 6=i

h2
ij Var (yj) = σ2

∑
j

h2
ij = σ2hii

Overcome with Standardization The above problem of each êi having different variances could
be overcame by standardizing the residuals. The i-th standardized residual is defined as (notice
that the s = σ̂ is the estimated variance in the SLR settings)

ri =
êi

s
√

1− hii
where s =

√√√√ 1

n− 2

n∑
j=1

ê2
j

Advantages of Standardization

• When points of high leverage exist, instead of looking at residual plots, it is generally more
informative to look at plots of standardized residuals since plots of the residuals will have
non-constant variance even if the errors have constant variance.
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• When points of high leverage do not exist, there is generally little difference in the patterns
seen in plots of residuals when compared with those in plots of standardized residuals.

• The other advantage of standardized residuals is that they immediately tell us how many
estimated standard deviations any point is away from the fitted regression model.

? Recognizing Outliers Using Standardized Residuals

• An outlier is a point whose standardized residual falls outside the interval from -2 to 2, i.e.
|ri| > 2

• A Bad Leverage Point is a leverage point whose standardized residual falls outside the
interval from -2 to 2, i.e. |ri| > 2 ∧ hii > 4

n

• A Good Leverage Point is a leverage point whose standardized residual falls inside the
interval from -2 to 2, i.e. |ri| ≤ 2 ∧ hii > 4

n

• Dealing with large datasets: In this case, we should change the above criterion to |ri| > 4
and |ri| ≤ 4 respectively. This is to give allowance for more occurrence of rare events in a
large data set.

Correlation Between Residuals Even if the errors are independent (homogeneous), i.e. ei ⊥⊥
ej (i 6= j), the residuals are still correlated. It can be shown that the covariance and the correlation
is given by

Cov (êi, êj) = −hijσ2(i 6= j)

Corr (êi, êj) =
−hij√

(1− hii) (1− hij)
(i 6= j)

Such correlation could be safely ignored in practice. They are usually given raise by inherent
correlation such as data collected over time.

Variance of Residuals Above we discussed ‘inter-correlation’ of residuals. The variance of a
single residual is

Var (êi) = (1− hii)σ2

3.2.3 Recommendations for Handling Outliers & Leverage

We have discussed multiple ways of assessing outliers and talked about the way to deal with them
by removing them. However, it is not always a good idea to delete them for the following reasons:

• Points should not be routinely deleted from an analysis just because they do not fit the model.
Outliers and bad leverage points are signals, flagging potential problems with the model.

• Outliers often point out an important feature of the problem not considered before. They
may point to an alternative model in which the points are not an outlier. In this case it is
then worth considering fitting an alternative model.
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3.2.4 Influence of Certain Cases

It can sometimes be the case that certain data points in a data set are drastically controlling
the entire regression model (the model has payed too much attention to them). We now develop
methods where we measure the “importance” of a data point.

Cook’s Distance First, define (recall if already defined) the following notation

• ŷj(i) means the the fitted value of the j-th data point on the regression line obtained by
removing the i-th case.

• S2 = 1
n−2

∑n
j=1 ê

2
j is the variance (Original MSE) of the total regression model.

• ri = êi
s
√

1−hii
where s =

√
1

n−2

∑n
j=1 ê

2
j

Then, the Cook’s Distance of the i-th data point is given by

Di =

∑n
j=1

(
ŷj(i) − ŷj

)2
2S2

=
r2
i

2

hii
1− hii

where we should note that Di may be large due to large ri, or large hii or both.

Rule: Cook’s Distance

• A point is noteworthy if

Di >
4

n− 2

• In practice, look for gaps in the values of Cook’s Distance and not just whether one value
exceeds tyhe suggested cut off.

3.2.5 Normality of the Errors

The assumption of normal errors is (especially) needed in small samples for the validity of t-dist
based tests and inferences. This assumption is generally checked by looking at the distribution
of the residuals or standardized residuals. Recall that the i-th least squares residuals is given by
êi = yi − ŷi. We will now show êi = ei −

∑n
j=1 hijej . First, in the derivation we will need these

two facts
n∑
i=1

hij = 1

and
n∑
j=1

xjhij =

n∑
j=1

[
xj
n

+
(xi − x̄) (xj − x̄)xj

SXX

]
= x̄+

(xi − x̄)SXX

SXX
= xi
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We then proceed as follows

êi = yi − ŷi = yi − hiiyi −
∑
j 6=i

hijyj

= yi −
n∑
j=1

hijyj

= β0 + β1xi + ei −
n∑
j=1

hij (β0 + β1xj + ej)

= β0 + β1xi + ei − β0 − β1xi −
n∑
j=1

hijej

= ei −
n∑
j=1

hijej

Q.E .D.†
The above result showed that the i-th least squares residual is equal to ei minus a weighted sum of
all the e’s. There are two cases to consider,

• In small to moderate samples, the second term could dominate the first and first and the
residuals can look like they come from a normal distribution even if the errors do not.

• When n is large, the second term in the derived result (thistle coloured) has a much smaller
variance than that of the first term and as such the first term dominates the last equation.

Conclusion: For large samples, the residuals can be used to assess normality of the errors.

Assessment Using Normal Q-Q A normal probability plot of the standardized residuals is
obtained by plotting the ordered standardized residuals on the vertical axis against the expected
order statistics from a standard normal distribution on the horizontal axes. If the resulting plot
produces points “close” to a straight line then the data are said to be consistent with that from
a normal distribution. On the other hand, departures from linearity provide evidence of non-
normality.
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The above four are figures that I borrowed from http://www.ucd.ie/ecomodel/Resources/QQplots_

WebVersion.html which illustrates how to interpret QQ plots with non-normal behaviour.

3.2.6 Constant Variance (Homoscedasticity)

A crucial assumption in any regression analysis is that errors have constant variance. Notice the
difference between error and residual, we have demonstrated in (3.2.2 Standardized Residuals)
that residuals are not of constant variance. There are two general methods that we can adopt to
overcome this issue, namely (both of which will be discussed later)

• Transformations

• Weighted Least Squares

Important: Ignoring non-constant variance when it exists invalidates all inferential tools, including
p-values, CI, PI, et cetra!

Behaviour of Non-Homoscedasticity For example, on the plot explanatory var against stan-
dardized residuals, we might see that as x increases, the residuals are more spread out, indicating
an increasing trend in the variance.

Checking for Constant Variance To check this, check the plot of

| Residuals |0.5 against x or | Standardized Residuals |0.5 against x

The power of 0.5 here is used to reduce skewness in the absolute values. In the above mentioned
example where the residuals become more spread out as x increases, the plot | Std Residuals |0.5
against x will have an overall increasing trend! This is essentially mirroring all the points to the
positive side (and de-skew) to observe a general trend.

3.3 Transformation

3.3.1 Variance Stabilizing Transformations

Goal When non-constant variance exists, it is often possible to transform one or both of the
regression variables to produce a model in which the error variance is constant.
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Delta Method, Poisson Suppose that Y ∼ Poi(µ = λ) and we want to find the appropriate
transformation of Y for stabilizing variance. In this case, square root is the appropriate transfor-
mation to apply. We will now justify this choice. Consider the McLauren Series expansion

f(Y ) = f(E(Y )) + f ′(E(Y ))(Y − E(Y )) + . . .

According to the delta rule, the first order variance term is obtained by taking variance on both
sides of the above equation, which yields

Var(f(Y )) ' [f ′(E(Y ))]
2

Var(Y )

Using the proposed transformation f(Y ) = Y 0.5 and recall from properties of Poisson Random
Variable that Var(Y ) = λ = E(Y ), then

Var
(
Y 0.5

)
'
[
0.5(E(Y ))−0.5

]2
Var(Y ) =

[
0.5λ−0.5

]2
λ = constant

Rule of Thumb: When both Y and X are measured in the same units then it is often natural to
consider the same transformation for both X and Y

Hence in this case our regression model would be

Y = β0 + β1x+ e

where
Y ←

√
Y and x←

√
x

3.3.2 Logarithms to Estimate Percentage Effects

Consider the regression model
log(Y ) = β0 + β1 log(x) + e

The slope,2

β1 =
∆ log(Y )

∆ log(x)
=

log (Y2)− log (Y1)

log (x2)− log (x1)
=

log (Y2/Y1)

log (x2/x1)

∼=
Y2/Y1 − 1

x2/x1 − 1
( using log(1 + z) ∼= z and assuming β1 is small )

=
100 (Y2/Y1 − 1)

100 (x2/x1 − 1)
=

%∆Y

%∆x

Interpretation We showed above that %∆Y ' β1 ×%∆x. Thus for every 1% increase in x, the
model predicts a β1% increase in Y (provided β1 is small).

2Notice that the first step is possible since here we are considering the regression straight line
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4 Weighted Least Square Regression

4.1 Motivation and Set-Up

Consider the straight line (simple) linear regression model

Yi = β0 + β1xi + ei where ei ∼ N
(

0,
σ2

wi

)
For the weight wi, we should note the following

• wi → ∞ =⇒ V ar(ei) → 0. In this case, the estimates of the regression parameters β0, β1

should be such that the fitted line at xi should be very close to yi. (Small variance means
more strict in terms of deviation from the regression line, corresponding to a larger emphasis
on the i-th data point.)

• If wi is some small value, then the variance of the i-th data point would be quite large. In this
case, we have a loose restriction of the deviation of the i-th data point from the regression
line meaning that little emphasis is taken for this data point.

• wi → 0 =⇒ V ar(ei) → ∞. In this case, we have the variance tending to infinity. Meaning
that there is absolutely no restriction/emphasis on the i-th data point and it could be simply
removed from the set.

We define the cost function, WRSS as

WRSS =

n∑
i=1

wi (yi − ŷWi
)
2

=

n∑
i=1

wi (yi − b0 − b1xi)2

and the estimators b = [b0, b1]T are derived using MLE.

Intuition behind WRSS This cost function may seem wierd at first glance, but it intuitively
makes sense. Notice that when wi is large, the i-th lost term wi (yi − ŷWi)

2
is payed more emphasis

on. On the contrary, when w0 → 0, the term → 0. (Indeed, when Variance of the term → ∞ we
just neglect it.)

4.2 Deriving LS Regressors

Derivatives
∂WRSS

∂b0
= −2

n∑
i=1

wi (yi − b0 − b1xi) = 0 (4)

∂WRSS

∂b1
= −2

n∑
i=1

wixi (yi − b0 − b1xi) = 0 (5)
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Normal Equations Obtained from rearranging the above equations, we will call them Normal
Eq1 and Normal Eq2 respectively for later reference.

n∑
i=1

wiyi = b0

n∑
i=1

wi + b1

n∑
i=1

wixi (6)

n∑
i=1

wixiyi = b0

n∑
i=1

wixi + b1

n∑
i=1

wix
2
i (7)

Rearranging Use Normal Eq1×
∑n
i=1 wixi and Normal Eq2×

∑n
i=1 wi

n∑
i=1

wixi

n∑
i=1

wiyi = b0

n∑
i=1

wi

n∑
i=1

wixi + b1

(
n∑
i=1

wixi

)2

(8)

n∑
i=1

wi

n∑
i=1

wixiyi = b0

n∑
i=1

wi

n∑
i=1

wixi + b1

n∑
i=1

wi

n∑
i=1

wix
2
i (9)

WLS Slope Regressor 3

β̂1W =

∑n
i=1 wi

∑n
i=1 wixiyi −

∑n
i=1 wixi

∑n
i=1 wiyi∑n

i=1

∑n
i=1 wix

2
i − (

∑n
i=1 wixi)

2 (10)

=

∑n
i=11 xi (xi − x̄W ) (yi − ȳW )∑n

i=1 wi (xi − x̄W )
2 (11)

WLS Intercept Regressor

β̂0W =

∑n
i=1 wiyi∑n
i=1 wi

− β̂1W

∑n
i=1 wixi∑n
i=1 wi

= ȳw − β̂1W x̄W (12)

5 Multiple Linear Regression (Under Construction)

5.1 SLR in Matrix Form

5.1.1 Set-Up

The simple linear regression model is
Y = Xβ + e

where Y ∈Mn×1(R), X ∈Mn×2(R), β ∈M2×1(R), e ∈Mn×1(R).

5.1.2 The Design Matrix

Xn×2 =


1 X1

1 X2

...
...

1 Xn

 =⇒ Xβ(n× 1)


β0 +X1β1

β0 +X2β1

...
β0 +Xnβ1


3Note that x̄W =

∑n
i=1 wixi/

∑n
i=1 wi and ȳW =

∑n
i=1 wiyi/

∑n
i=1 wi
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5.1.3 Normal Error Regression Model

Gauss - Markov Conditions

• The errors have zero mean, E(e) = 0

• The errors have constant variance, σ2

• The errors are uncorrelated, V (e) = σ2I

Jointly Normal The error terms follow a multivariate normal,

e ∼ Nn(Σ = 0, σ2I)

5.1.4 OLS in Matrix Form

Consider β = [β0, β1]′, and the cost function

RSS(β) = (Y −Xβ)′(Y −Xβ)

= Y ′Y + (Xβ)′Xβ − Y ′Xβ − (Xβ)′Y

= Y ′Y + β′ (X ′X)β − 2Y ′Xβ

Derivative
∂RSS(β)

∂β
= 0− 2X ′Y + 2X ′Xβ

Normal Equation obtained by setting derivate to zero and re-arrange

2X ′Xβ̂ = 2X ′Y

OLS Regressor
β̂ = (X ′X)−1X ′Y

Reduction From Matrix Notation to Scaler Notation We will now show that the matrix
form we just derived is equivalent to the form that we discussed/derived earlier in the chapter,
where we computed the two estimators separately. First, Let’s show some identities that will be
used in the derivation.

X′X =

(
1 1 · · ·
x1 x2 · · ·xn

)
1 x1

1 x2

...
...

1 xn

 =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

)
= n

(
1 x̄
x̄ 1

n

∑n
i=1 x

2
i

)

=⇒ (X′X)
−1

=
1

n
(

1
n

∑n
i=1 x

2
i − (x̄)2

) ( 1
n

∑n
i=1 x

2
i −x̄

−x̄ 1

)
=

1

SXX

(
1
n

∑n
i=1 x

2
i −x̄

−x̄ 1

)
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and

X′Y =

(
1 1 · · · 1
x1 x2 · · · xn

)
y1

y2

...
yn

 =

( ∑n
i=1 yi∑n
i=1 xiyi

)

Thus, the regressor could be break down into

β̂ = (X′X)
−1

X′Y

=
1

SXX

(
1
n

∑n
i=1 x

2
i −x̄

−x̄ 1

)( ∑n
i=1 yi∑n
i=1 xiyi

)
=

1

SXX

(
1
n

∑n
i=1 yi

∑n
i=1 x

2
i − x̄

∑n
i=1 xiyi∑n

i=1 xiyi − x̄
∑n
i=1 yi

)
=

(
ȳ{∑n

i=1 x
2
i−nx̄

2}−x̄{∑n
i=1 xiyi−nxy}

SXX
SXY /SXX

)

=

(
ȳ − SXY

SXX x̄
SXY
SXX

)
Indeed, the results that we get confirms that our matrix form is equivalent. Q.E .D.†

5.1.5 Properties of OLS Regressors

Expectation: Unbiased Estimator

E(β̂) = E((X ′X)−1X ′Y )

= E(Y )(X ′X)−1X ′

= (X ′X)−1X ′E(Xβ + e)

= (X ′X)−1X ′(Xβ + 0)

= Iβ = β

Q.E .D.†

Variance - Covariance Matrix

V AR(β̂) = V AR((X ′X)−1X ′︸ ︷︷ ︸
constant

Y )

= [(X ′X)−1X ′] σ2I︸︷︷︸
V AR(Y )

[(X ′X)−1X ′]′

= σ2I(X ′X)−1X ′X(X ′X)−1︸ ︷︷ ︸
≡ I

= σ2(X ′X)−1

=

[
V AR(β̂0) =

σ2 ∑
x2
i

nSXX COV (β̂0, β̂1) = −σ2x̄
SXX

COV (β̂1, β̂0) = −σ2x̄
SXX V AR(β̂1) = σ2

SXX

]
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5.1.6 The Hat Matrix

Defining the Hat We have

ê =


e1

e2

...
en

 = Y − Ŷ = Y −Xβ̂ and Ŷ = Xβ̂ = X (X′X)
−1

X′Y = HY

where
HAT Matrix H := X (X′X)

−1
X′

Thus, ê = Y −HY = (I−H)Y

Facts About the Hat Matrix

• H is symmetric
H ′ = (X(X ′X)−1X ′)′ = X(X ′X)−1X ′ = H

• H is idempotent

H2 = HH = X(X ′X)−1X ′X(X ′X)−1︸ ︷︷ ︸
≡ I

X ′

= X(X ′X)−1X ′ = H

5.1.7 Properties of the Residuals in Matrix Form

ê = (I −H)Y = (I −H)(Xβ + e)

= (I −H)Xβ + (I −H)e

= IXβ −HXβ + (I −H)e

= Xβ −XX(X ′X)−1X︸ ︷︷ ︸
≡ I

β + (I −H)e

= Xβ −Xβ + (I −H)e

= (I −H)e

Expectation

E(ê|X) = E((I −H)Y |X) = E((I −H)e|X) = E(e|X)︸ ︷︷ ︸
≡0

(I −H) = 0

Variance - Covariance

V AR(ê|X) = V AR((I −H)e|X)

= (I −H)V AR(e|X)(I −H)′

= (I −H)σ2I(I −H)′

= (I −H)σ2I(I −H) since (I −H) is symmetric

= σ2(I −H) since (I −H) is idempotent
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5.1.8 ANOVA in Matrix Form

Total Sum Squared (SST)

SST =
∑

(yi − ȳ)
2

=
∑

y2
i − nȳ2

= Y ′Y − 1

n
Y ′JY

= Y ′ (I − 1

n
J)︸ ︷︷ ︸

symmetric square matrix

Y

︸ ︷︷ ︸
quadratic form

To find the corresponding df, we first check the idempotency of I − 1
nJ . Indeed,

(I − 1

n
J)(I − 1

n
J) = I2 − 2

n
J +

1

n2
J2 = I − 1

n
J

Then, applying Rank(idempotent mat) = Tr(idempotent mat), we have

Rank(I − 1

n
J) = n− 1 = degrees of freedom of SST

Residual Sum Squared (RSS) Notice that (I −H) is symmetric and idempotent,

RSS =
∑

ê2
i = ê′ê = Y ′(I −H)(I −H)Y = Y ′(I −H)Y

and the corresponding degrees of freedom is

Rank(I −H) = Rank(I)−Rank(H) = Tr(I)− Tr(H) = n− 2 = df of MSE

Regression Sum Squared (SSReg)

SSReg = SST −RSS
= Y ′(I − 1/nJ)Y − Y ′(I −H)Y

= Y ′IY − Y ′1/nJY − Y ′IY + Y ′HY

= Y ′(H − 1

n
J)Y

and the corresponding degrees of freedom is

Rank(H − 1

n
J) = Rank(H)−Rank(

1

n
J) =

∑
hii −

∑ 1

n
= 2− 1 = 1 = df of MSReg

5.1.9 ANOVA Table in Matrix Form

Source SS df

Regression Y′
(
H− 1

nJ
)
Y 1

Error Y′(I−H)Y n− 2

Total Y′
(
I− 1

nJ
)
Y n− 1
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5.2 Estimation and Inference in MLR

5.2.1 The MLR Model

In the familiar SLR settings, we have that Y = β0 + β1x + error, where we had one predictor
variable (so called ‘simple’). In the MLR settings, we want to add multiple predictors. This leads
to the formulation of expectation

E (Y |X1 = x1, X2 = x2, . . . , Xp = xp) = β0 + β1x1 + β2x2 + . . .+ βpxp

Thus,
Yi = β0 + β1x1i + β2x2i + . . .+ βpxpi + ei

where ei is the random fluctuation (or error) in Yi such that E(ei|X) = 0. In this case the response
variable Y is predicted from p predictor variables X1, X2, ..., Xp and the relationship between Y
and X1, X2, ..., Xp is linear in the parameters β0, β1, β2, . . . , βp.

5.2.2 OLS Regressors - Expanded Scaler Form

The RSS Cost The least squares regressors of β0, β1, β2, . . . , βp are the value of b0, b1, b2, . . . , bp
for which the sum of the squared residuals, we define our cost function RSS

RSS =

n∑
i=1

ê2
i =

n∑
i=1

(yi − ŷi)2
=

n∑
i=1

(yi − b0 − b1x1i − b2x2i − . . .− bpxpi)2

Derivatives

∂ RSS
∂b0

= −2
∑n
i=1 (yi − b0 − b1x1i − b2x2i − . . .− bpxpi) = 0

∂ RSS
∂b1

= −2
∑n
i=1 x1i (yi − b0 − b1x1i − b2x2i − . . .− bpxpi) = 0

. . .

∂ RSS
∂bp

= −2
∑n
i=1 xpi (yi − b0 − b1x1i − b2x2i − . . .− bpxpi) = 0

which will give us a system of p+ 1 equations and p+ 1 variables to optimize on. Notice that this
usually requires computers to help in the actual optimization calculations. Hence we should see the
much more concise matrix formulation.

5.2.3 OLS Regressors - Matrix Form

Let Y ∈Mn×(p+1)(R), X ∈Mn×(p+1)(R), β ∈M(p+1)×1(R) and e ∈Mn×1(R) given by

Y =


y1

y2

...
yn

 ,X =


1 x11 · · ·x1p

1 x21 · · ·x2p

...
...

1 xn1 · · ·xnp

 , β =


β0

β1

...
βp

 , e =


e1

e2

...
en


Then the multiple linear regression model in matrix notation could be written as

Y = Xβ + e
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Notation Let x′i denote the i-th row of the design matrix X, then

x′i :=
[
1 xi1 xi2 ... xip

]
∈M1×(p+1)(R)

This enables us to write

E(Y |X = x) = β0 + β1x1 + β2x2 + . . .+ βpxp = x′iβ

RSS Cost (Matrix Notation) The residual sum of squares as a function of β can be written
in matrix form as

RSS(β) = (Y −Xβ)′(Y −Xβ)

= Y′Y + (Xβ)′Xβ −Y′Xβ − (Xβ)′Y

= Y′Y + β′ (X′X)β − 2Y′Xβ

Normal Equation is obtained by setting the derivative to zero

(X′X)β = X′Y

OLS Regressor

β̂ = (X′X)
−1

X′Y

Hence, our fitted line is given by
Ŷ = Xβ̂

and the residuals are
ê = Y − Ŷ = Y −Xβ̂

5.2.4 Properties of OLS Regressors

Expectation: Unbiased Estimator

E(β̂) = E((X ′X)−1X ′Y )

= E(Y )(X ′X)−1X ′

= (X ′X)−1X ′E(Xβ + e)

= (X ′X)−1X ′(Xβ + 0)

= Iβ = β

Q.E .D.†

Variance - Covariance Matrix

V AR(β̂) = V AR((X ′X)−1X ′︸ ︷︷ ︸
constant

Y )

= [(X ′X)−1X ′] σ2I︸︷︷︸
V AR(Y )

[(X ′X)−1X ′]′

= σ2I(X ′X)−1X ′X(X ′X)−1︸ ︷︷ ︸
≡ I

= σ2(X ′X)−1
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5.2.5 The Hat Matrix

Defining the Hat We have

ê =


e1

e2

...
en

 = Y − Ŷ = Y −Xβ̂ and Ŷ = Xβ̂ = X (X′X)
−1

X′Y = HY

where
HAT Matrix H := X (X′X)

−1
X′

Thus, ê = Y −HY = (I−H)Y

Facts About the Hat Matrix

• H is symmetric
H ′ = (X(X ′T )−1X ′)′ = X(X ′X)−1X ′ = H

• H is idempotent

H2 = HH = X(X ′X)−1X ′X(X ′X)−1︸ ︷︷ ︸
≡ I

X ′

= X(X ′X)−1X ′ = H

5.2.6 Properties of the Residuals in Matrix Form

ê = (I −H)Y = (I −H)(Xβ + e)

= (I −H)Xβ + (I −H)e

= IXβ −HXβ + (I −H)e

= Xβ −XX(X ′X)−1X︸ ︷︷ ︸
≡ I

β + (I −H)e

= Xβ −Xβ + (I −H)e

= (I −H)e

Expectation

E(ê|X) = E((I −H)Y |X) = E((I −H)e|X) = E(e|X)︸ ︷︷ ︸
≡0

(I −H) = 0

Variance - Covariance

V AR(ê|X) = V AR((I −H)e|X)

= (I −H)V AR(e|X)(I −H)′

= (I −H)σ2I(I −H)′

= (I −H)σ2I(I −H) since (I −H) is symmetric

= σ2(I −H) since (I −H) is idempotent
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5.2.7 Residual Sum of Squares (RSS)

The residual sum of squares as a function of the OLS regressors β̂ can be written in matrix form
as follows

RSS = RSS(β̂) = (Y −Xβ̂)′(Y −Xβ̂) = ê′ê =

n∑
i=1

ê2
i

5.2.8 Estimating Error Variance

Unbiased Estimator σ̂2 = S2 =
RSS

n− p− 1
=

1

n− p− 1

n∑
i=1

ê2
i

5.2.9 CIs and Significance Tests

4 Assuming that the errors are normally distributed5 with constant variance, then for each i =
0, 1, ..., p we have the test statistic

Ti =
β̂i − βi
se(β̂i)

∼ tdf=(n−p−1)

where we recall that the variance-covariance matrix is V AR(β̂) = σ2(X ′X)−1, and thus

se(β̂i) = σ̂2
[
(X ′X)−1

]
ii

=

[
(X ′X)−1

]
ii

n− p− 1

n∑
i=1

ê2
i

5.2.10 ANOVA and Global F-Test

Hypothesis The goal is to test if there is a linear association between the explanatory variables
and the explained variable. So the null hypothesis we will use is H0 : β1 = β2 = . . . = βp = 0
against the alternative hypothesis that HA : at least some of the βi 6= 0.

Test Statistic Under the assumption that e1, ..., en are independent and normally distributed, it
can be shown that the F test statistic is defined as follows and follows a F distribution.

F =
SSreg /p

RSS /(n− p− 1)
∼F(p,n−p−1)

MLR ANOVA Table

Source of Variation df SS MS = SS/df F

Regression p SSReg SSReg/p F = SSreg /p
RSS /(n−p−1)

Residual n− p− 1 RSS S2 = RSS
n−p−1

Total n− 1 SST = SY Y
4Q: Why was this not included in the class slides?
5It is worth noticing that errors are almost always assumed to be normal when we are trying to do inferences on

the regression results (Estimates).
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Notes

• R2, the coefficient of determination of the regression line, is defined as the proportion of the
total sample variability in the Y ’s explained by the regression model, that is

R2 =
SSreg

SST
= 1− RSS

SST

• The above formulation doesn’t capture the problem where we have irrelevant predictor vari-
ables in the regression equation. To compensate, we define the adjusted coefficient of
determination, R2

adj

R2
adj = 1− RSS /(n− p− 1)

SST /(n− 1)

Here S2 = RSS
n−p−1 is an unbiased estimate of σ2 = Var(Yi) = Var(ei) while SST/(n − 1) is

an unbiased estimate of σ2 = Var(Yi) when β1 = β2 = ... = βp = 0. Thus, when comparing
models with different numbers of predictors one should use R2

adj rather than R2.

• The F-test is always used first to test for the existence of a linear association between Y and
ANY of the p x-variables. If the F-test is significant then a natural question to ask is

For which of the p x-variables is there evidence of a linear association with Y ? To
answer this question we could perform p separate t-tests of H0 : b1 = 0. However,
as we shall see later there are problems with interpreting these t-tests when the
predictor variables are highly correlated.

The above problem could be addressed by the partial F-test6 which is defined below.

Extra Notes on R-Squared & Adjusted R-Squared

• As p ↑, we know

– SST remains the same

– SSReg remains the same or increases

– RSS remains the same or decreases

Thus, R2 ↑ regardless.

• Notice that if we use the normal R-Squared (R2), then the value of R2 will always increase
regardless of the usefulness of extra predictors added when we increase p. That is, when p
gets larger, R2 will always increase, which makes this statistics useless. (Not helpful in telling
whether additional predictors are useful for explaining the response)

• As p ↑, we know (n− p− 1) ↓. Then n−1
n−p−1 ↑ and thus R2

adj ↓.

• It is always the case that R2
adj < R2

6Notice that here the partial means we are not testing all the β1 up to βp’s but only a subset of them.
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5.2.11 Partial F-Test

Goal Test whether a specified subset of the predictors have regression coefficients equal to zero.

Hypothesis Suppose that we are interested in testing

H0 : β1 = β2 = . . . = βk = 0 where k < p
i.e., Y = β0 + βk+1xk+1 + . . .+ βpxp + e (reduced model)

against

HA : H0 is not true
i.e., Y = β0 + β1x1 + . . .+ βkxk + βk+1xk+1 + . . .+ βpxp + e (full model)

This can be done using the F -Test. Define

RSS(Full) := RSS under the full model

RSS(reduced) := RSS under the reduced model

Test Statistics Then, the F -statistic is given by

F =
(RSS(reduced)− RSS(full))/ (df reduced − df full)

RSS(full)/df full

=
(RSS(reduced)− RSS(full))/k

RSS(full)/(n− p− 1)

H0∼ F(k,n−p−1)

The reduction on the second line above is done by noticing that the reduced model has p + 1 − k
predictors and thus (dfreduced − df full) = [n− (p+ 1− k)]− [n− (p+ 1)] = k.

Using R Output To do the above test, we need the ANOVA tables from the reduced and full
models in R.

Partial F-Test Interpretation The above partial F-Test tries to capture the idea of “Is the un-
explained variation reduced by a significant amount when the predictors are added to the model?”.It
is important to remember which number is bigger than which in the above calculations. We have,
in general,

• SST(full) = SST(Reduced)

• SSReg(full) ≥ SSReg(reduced)

• RSS(full) ≤ RSS(reduced)

Notice that the third inequality could be simply remembered as “denominator of the F statistics
need to be positive”, i.e. (RSS(reduced)− RSS(full)) ≥ 0 =⇒ RSS(reduced) ≥ RSS(full)

Rationale for Above Relationship

• RSS(full) = minβ∈Rp+1(Y −Xβ)′(Y −Xβ)

• RSS(full) = minβ∈Rk+1(Y −Xβ)′(Y −Xβ)

• The minimum in a higher dimensional space is always the same or less.

https://tingfengx.github.io/uoftnotes/ Page 33

https://tingfengx.github.io/uoftnotes/


Miscellaneous Notes on Regression; Fall 2019 by Xia, Tingfeng

Special Case of k = 1 In this special case of the Partial F-test, we are testing the whether some
specific βi has the value of one, i.e. is irrelevant to the explained variable. A catch here is that the
order in which individual predictors are added to the model in R is important! We can just use a
single summary output of the full model if the variable whose coefficient is βi was listed last in the
lm() call.

5.2.12 Combining Global F-test with t-tests

Case A: If the global F-test is significant, then

• If all or some f the t-tests are significant, then there exists some useful explanatory variable
for the predicted variable.

• If all t-test are not significant, then there is an indication of multicollineararity7, i.e. strongly
correlated X’s. This implies that individual X do not contribute to the prediction of Y over
and above other X’s.

Case B: If the Global F-Test is NOT significant, then

• If all t-tests are not significant, then none of the listed predictor variable contribute to the
prediction of Y .

• If some of the t-tests are significant, then

1. The model has no predictive ability. Likely, if there are many predictors, there are type
I errors8 in the t-tests.

2. The predictors are poorly chosen. The contribution of one useful predictor among many
poor ones may not be enough for the model (Global F-test) to be significant.

5.3 Analysis of Covariance (ANCOVA)

We shall first discuss the setup of ANCOVA, which is stated as follows. Consider the situation in
which we want to model a response variable, Y based on a continuous predictor, x and a dummy
variable, d. Suppose that the effect of x on Y is linear. This situation is the simplest version of
what is commonly referred as Analysis of Covariance, since the predictors include both quantitative
variables (i.e., x) and qualitative variables (i.e., d).

5.3.1 Coincident Regression Lines

This is the simplest case of all, which happens when the categorical dummy variable has no effect
on Y , that is

Y = β0 + β1x+ e for b ∈ {0, 1}
7Discussed below in 6.3
8Type I errors refers to the error caused when we rejected hypotheses that are actually true.
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5.3.2 Parallel Regression Lines

In this case, the dummy variable produces so called additive changes to the regression model. The
model takes the form

Y = β0 + β1x+ β2d+ e =

{
Y = β0 + β1x+ e when d = 0

Y = β0 + β2 + β1x+ e when d = 1

Here the regression coefficient β2 measures the additive change in Y due to the dummy variable.

5.3.3 Regression Lines w/ Equal Intercepts & Different Slopes

In this model, the dummy variable only changes the size of the effect of x on Y. This is described
by the following formulation,

Y = β0 + β1x+ β3d× x+ e =

{
Y = β0 + β1x+ e when d = 0
Y = β0 + (β1 + β3)x+ e when d = 1

5.3.4 Unrelated Regression Lines

This is the most general case of all, where the dummy variable produces an additive change in Y
and also changes the size of the effect of x on Y . The formulation breaks into

Y = β0 + β1x+ β2d+ β3d× x+ e =

{
Y = β0 + β1x+ e when d = 0
Y = β0 + β2 + (β1 + β3)x+ e when d = 1

In this formulation, the regression coefficient

• β2 measures the additive change in Y due to the dummy variable.

• β3 measures the change in size of the effect of x on Y due to the dummy variable.

6 Diagnostics and Transformations for MLR

6.1 Regression Diagnostics for Multiple Regression

6.1.1 Leverage Points in Multiple Regression

Data points which exercise considerable influence on the fitted mode are called leverage points.
Leverage is a measurement of the extent to which the fitted regression model is attracted by the
given data point. We are interested in the relationship of the fitted values Ŷ and Y. We should
recall that from the previous section Ŷ = Xβ̂ = X (X′X)

−1
X′Y = HY.

Popular Rule For Identifying Leverage Points We say the i-th point is a point of high
leverage in a MLR model with p predictors if

hii > 2× average (hii) = 2× (p+ 1)

n
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6.2 Properties of Residuals in MLR

Recall that ê = Y − Ŷ = (I−H)Y, E(ê|X) = 0, and var(ê|x) = σ2(I−H).

Standardized Residuals The i-th least squares residual have variance given by

Var (êi) = σ2 [1− hii]

and thus the standardized residual is

ri =
êi

s
√

1− hii
where s = σ̂ =

√√√√ 1

n− (p+ 1)

n∑
j=1

ê2
j

Fences As a common practice of labelling points as outliers is to check if the standardized resid-
uals, as calculated above, is in the range (−∞,−2] ∪ [2,∞). Also notice when we have a large set
of data, the fences should be changed to ±4.

Residual Plot When a valid model has been fit to the data, the residuals ri’s against any
predictor or linear combination of predictors (such as the fitted values) must be

• A random scatter of points around the horizontal axis.

• Constant variability as we look along the horizontal axis. Note: If we observe a pattern in
the residual plot, then we should consider adding extra predictor variables, since clearly not
all variation has been explained.

6.2.1 Classification

• Outlier y : A point xi is an outlier in the y direction if |ri| > 2. It is not an outlier otherwise.

• Leverage Points: A point xi is a leverage point if hii >
2×(p+1)

n

1. Bad, Influential: means Leverage + Outlier

2. Good: means Leverage but not Outlier

6.3 Box-Cox Transformation

• Note: Details not needed.

• One of the most cited papers in Statistics - Box and Cox (1964)

• A general method for transforming a strictly positive response variable

• Aims to find transformation that makes the transformed variable close to normally distributed

• Considers a family of power transformation

• Based on maximizing a likelihood function
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6.4 Added Variable Plots

Suppose that our current model is

Y = Xβ + e (modelYX)

and we are considering the introduction of an additional predictor variable, Z, that is, our new
model is

Y = Xβ + Zα+ e (modelYXZ)

and the added-variable plot is obtained by plotting the residuals from (modelYX) against the
residuals from the model

Z = Xδ + e (modelZX)

Rationale for using such method

• To visually assess the effect of each predictor, having adjusted for the effects of the other
predictors

• To visually estimate α

• Can be used to identify points which have undue influence on the least squares estimate of α

6.5 Multi-Collinearity

Multicollinearity occurs when explanatory variables are highly correlated. In such case,

1. It is difficult to measure the individual influence of one of the predictors on the response.

2. The fitted equation is unstable

3. The estimated regression coefficients vary widely from data set to data set, even if the data
sets are similar, and depending on which predictor is included in the model.

4. The estimated regression coefficients may even have opposite sign than what is expected.

5. When some X’s are perfectly correlated, we can’t acquire the estimate β̂ since X ′X is singular.

6. Even when in the case where X ′X is close to singular, its determinant will be close to zero
and the standard errors of estimated coefficients will be large.

6.5.1 Variance Inflation Factors (VIFs)

For the general MLR model,
Y = β0 + β1x1 + ...+ βpxp + e

Then, we have

VAR(β̂j) =
1

1−R2
j

× σ2

(n− 1)S2
xj

where j = 1, ..., p

The j-th Variance Inflation Factor is defined as VIFj := 1
1−R2

j
. Common identification cut-off is 5.
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7 Variable Selection

• Variable selection methods aim to choose the subset of the explanatory variables that is the
best in a given sense

• Overfitting: occurs when too many predictors are in the final regression model. Essentially,
we have learnt too much information about some data set and may not be able to generalize
in future predictions. The term under-fitting refers to the opposite of above.

• In general, there is a bias variance trade-off: when we add more predictors to a valid model,

– the bias of the predictions gets smaller,

– but the variance of the estimated coefficients gets larger.

• Thoughts: Might be helpful to think of this in the following way: when we add more and
more predictors to the regression model, we are capturing more and more information from
the data set. To some extent, we will also capture inherent variability in the data which
means we will have high variance. However, indeed we learnt the training data, at least, well
so the bias is low. The reverse of the argument says about having a model that has too few
predictors that fails to explain pattern in the data.

7.1 Information Criterion

7.1.1 Likelihood-based Criteria

Defining Likelihood Suppose that yi, x1i, . . . , xpi, i = 1, . . . , n are observed values of normal
random variables and

yi|x1i, . . . , xpi ∼ N
(
β0 + β1x1i + · · ·+ βpxpi, σ

2
)

Thus, the conditional density of yi given x1i, . . . , xpi is given by

f (yi|x1i, . . . , xpi) =
1

σ
√

2π
exp

(
− (yi − {β0 + β1x1i + · · ·+ βpxpi})2

2σ2

)

Assuming that the n observations are independent, then the likelihood function of the unknown
parameters β0, β1, . . . , βp, σ

2 given Y is given by

L
(
β0, β1, . . . , βp, σ

2|Y
)

=

n∏
i=1

f (yi|xi)

=

n∏
i=1

1

σ
√

2π
exp

(
− (yi − {β0 + β1x1i + · · ·+ βpxpi})2

2σ2

)

=

(
1

σ
√

2π

)n
exp

(
− 1

2σ2

n∑
i=1

(yi − {β0 + β1x1i + · · ·+ βpxpi})2

)
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Log-Likelihood Function is given by

logL
(
β0, β1, . . . , βp, σ

2|Y
)

= −n
2

log(2π)− 1

2
log σ2 − 1

2σ2

n∑
i=1

(yi − {β0 + β1x1i + · · ·+ βpxpi})2

Equivalence of MLE and OLS We notice that above only the the third term contains the
regression parameters β0, β1, . . . , βp. The MLEs of β0, β1, . . . , βp can be obtained by minimizing
the third term only, which is equivalent to minimizing the RSS. Hence, MLEs, of β0, β1, . . . , βp are
equal to the least squares estimates .

Log-Like w/ MLR Substituting the least square estimates of β0, β1, . . . , βp, the log-likelihood
function is rewritten as

logL
(
β̂0, β̂1, . . . , β̂p, σ

2|Y
)

= −n
2

log(2π)− n

2
log σ2 − 1

2σ2
RSS

where RSS is defined as RSS :=
∑n
i=1 (yi − {β0 + β1x1i + · · ·+ βpxpi})2

. Solving for the MLE of
σ2, we get

σ2
MLE =

RSS

n

which differs slightly from the unbiased estimate of σ2, namely, S2 = RSS/(n−p−1). Substituting
the MLE of σ2 into the expression for the log-like, we find that the likelihood associated with the
maximum likelihood estimates is given by

logL
(
β̂0, β̂1, . . . , β̂p, σ̂

2|Y
)

= −n
2

log(2π)− n

2
log

(
RSS

n

)
− n

2

7.1.2 Akaike’s Information Criterion (AIC)

Goal Balance goodness-of-fit of the model and the complexity of the model, in terms of number
of predictors.

AIC Defined

AIC = 2
[
− log

(
L
(
β̂0, β̂1, . . . , β̂p, σ̂

2|Y
))

+K
]

where K = p+ 2

One can think of the K = p + 2 as a ‘degree of freedom’, since here we have β0, β1, . . . , βp, σ
2 in

total of p+ 2 estimated values in the model.

AIC in R

AIC = n log

(
RSS

n

)
+ 2p

Rule The smaller the value of AIC the better the model.
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7.1.3 AIC - Corrected

Goal When the sample size is small, or when the number of parameters estimated is a moderate
to large fraction of the sample size, it is well-known that AIC has a tendency for over-fitting since
the penalty for model complexity is not strong enough. As such, the AICC is developed to address
this issue.

AICC Defined

AICC = −2 log(L(θ̂|Y )) + 2K +
2K(K + 1)

n−K + 1
= AIC +

2K(K + 1)

n−K + 1

when K = p+ 2, we have the equivalent form

AICC = AIC +
2(p+ 2)(p+ 3)

n− p− 1

When To Use? In general, use AICC over AIC since when n → ∞, AICC converges to AIC.
It is recommended that AICC should be used over AIC if n

K > 40.

7.1.4 Bayesian Information Criterion (BIC)

BIC Defined The BIC is defined as,

BIC = −2 log
(
L
(
β̂0, β̂1, . . . , β̂p, σ̂

2|Y
))

+K log(n) where K = p+ 2

The BIC is formulated quite similarly o the AIC we defined above, notice that we replaced the
complexity penalty of 2K in AIC with K log n here in BIC. (Notice that the factors here are 2 and
log n respectively.) We see that when n ≥ 8, log n ≥ 2 and hence when sample size is larger than
8, BIC penalizes more to the model complexity. This results in BIC favouring simpler models than
AIC

BIC in R

BIC = n log

(
RSS

n

)
+ p log(n)

7.1.5 Data Strategy

A popular data strategy is to

1. Calculate R2
adj ,AlC,AICC , and BIC, and then

2. compare the models which minimize AIC,AICC , and BIC with the model that maximizes
R2
adj

https://tingfengx.github.io/uoftnotes/ Page 40

https://tingfengx.github.io/uoftnotes/


Miscellaneous Notes on Regression; Fall 2019 by Xia, Tingfeng

7.2 Stepwise Regression

7.2.1 Terminologies

If there are k terms that can be added to the mean function apart from the intercept, then there
are 2k possible regression equations. In general, we have the following terminologies

• Backward Elimination: starts with all the potential terms in the model, then removes the
term with the largest p-value each time to give a smaller information criterion.

• Forward Selection: starts with no term in the model, then adds one term at a time (with
the smallest p-value) until no further terms can be added to produce a smaller information
criterion.

• Stepwise regression: alternates forward steps with backward steps.

7.2.2 Interpretation

• Backward elimination and forward selection considers at most k + (k − 1) + ... + 1 = k(k+1)
2

of the 2k possible predictor subsets.

• Stepwise regression can consider more subsets than the backward or forward methods.

• The idea is to end up with a model where no variables are redundant given the other variables
in the model. We have a term for this: “parsimonious”.

• Often, backward elimination and forward selection will produce the same final model.

• Selection overstates significance

– estimates of regression coefficients are biased

– p-values from F and t-tests are generally smaller than their true values.

7.3 Penalized Regression

Penalized Linear Regression performs vriable selection and regression coefficient estimation simul-
taneously. It can be formulated as a constrained OLS optimization problem, with the cost function

J :=

n∑
i=1

(
Yi − β′xi

)2
+

p∑
j=1

pλ(.) optimized at min
βp

J

In the above formulation, the p(·) is the penalty function and λ ≥ 0 is the penalty (hyper-)parameter
which we have to tune. When λ = 0, this is just the familiar OLS. We have two common choices
for the penalty function,

• (L2-Norm Penalty) Ridge: pλ = λβ2
j

• (L1-Norm Penalty) Lasso: pλ = λ |βj |
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8 Selected Properties, Formulae, and Theorems

This section contains various properties mentioned in the slides/book. They may or may not have
appeared in precious sections.

8.1 Properties of Fitted Regression Line

•
∑n
i=1 êi = 0

• RSS =
∑n
i=1 ê

2
i 6= 0, generally. Except for when we have perfect fit.

•
∑n
i=1 êixi = 0

•
∑n
i=1 êiŷi = 0

•
∑n
i=1 ŷi =

∑n
i=1 yi

8.2 Rules of Expectation

• E(a) = a,∀a ∈ R)

• E(aY ) = aE(Y )

• E(X ± Y ) = E(X)± E(Y )

• X ⊥⊥ Y =⇒ E(EY ) = E(X)E(Y )

• Tower Rule: E(Y ) = E(E(Y |X))

8.3 Variance and Covariance

• V (a) = 0,∀a ∈ R

• V (aY ) = a2V (Y )

• Cov(X,Y ) = E{(X − E(X))(Y − E(Y ))} = E(XY )− E(X)E(Y )

• Cov(Y, Y ) = V (Y )

• V(Y ) = V[E(Y |X)] + E[V(Y |X)]

• V(X ± Y ) = V(X) + V(Y )± 2 Cov(X,Y )

• Cov(X,Y ) = 0, if X and Y are independent

• Cov(aX + bY, cU + dW ) = acCov(X,U) + adCov(X,W ) + bcCov(Y,U) + bdCov(Y,W )

• Correlation: ρ = Cov(X,Y )√
V(X)V(Y )
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8.4 The Theorem of Gauss-Markov

Under the conditions of the simple linear regression model, the OLS regressors are BLUE (“Best
Linear Unbiased Estimators”).

• Best - obtains the minimum variance among all unbiased linear estimators.

• Linear - Linear in the parameter space. That is, feature maps are linear, although the actual
curve of regression is ‘non-linear’.

• Unbiased - The estimators are unbiased, namely β̂0, β̂1.

• Estimator - Estimators β̂0, β̂1 for β0 and β1 respectively.

8.5 Matrix Form Rules

8.5.1 Summations

Consider A,B as compatible matrices where appropriate and k ∈ R then

• A + B = B + A

• (A + B) + C = A + (B + C)

• (AB)C = A(BC)

• C(A + B) = CA + CB

• k(A + B) = kA + kB

8.5.2 Transpositions

• (A′)
′

= A

• (A + B)′ = A′ + B′

• (AB)′ = B′A′

• (ABC)′ = C′B′A′

8.5.3 Inversions

• (AB)−1 = B−1A−1

• (ABC)−1 = C−1B−1A−1

•
(
A−1

)−1
= A

•
(
AT
)−1

=
(
A−1

)T
• [(X′X)−1]′ = [(X′X)′]−1 (∗∗)
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8.5.4 Idempotency

• If A is an idempotent matrix, i.e. A2 ≡ A, then Tr(A) = Rk(A).

• A ∈Mn×n(R) is idempotent if and only if

Rk(A) +Rk(In×n −A) = n

8.5.5 Other Misc

• The trace of a composition of linear operators has a cyclic property, Tr(ABC) = Tr(CAB) =
Tr(BCA). Notice that arbitrary permutation is not valid for this rule.

8.5.6 Covariance Matrix

• The variance-covariance matrix of a random vector Y is a symmetric, positive semi-definite
matrix, defined as

Var(Y) = E [(Y −E(Y))(Y −E(Y))′]

= E

 (Y1 − E (Y1))
2

(Y1 − E (Y1)) (Y2 − E (Y2)) . . .

(Y2 − E (Y2)) (Y1 − E (Y1)) (Y2 − E (Y2))
2 · · ·

...
...

. . .


• Let A be a square matrix of constants

Var(AY) = E [(AY −E(AY))(AY −E(AY))′]

= E [A(Y −E(Y))(Y −E(Y))′A′]

= AE [(Y −E(Y))(Y −E(Y))′] A′

= AVar(V)A′
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