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1 Arguments

1.1 Validity

We say a deductive argument is valid iff it is not invalid. This means that we can find out if a
argument is valid or not by assessing the possibility of the case where the premise is true and
conclusion is false.

1.2 Soundness

We say a deductive argument is sound iff it is

• It is valid

• All the premises are TRUE

2 Semantics in Sentential Logic

2.1 Syntax

Sentential Logic(SL) Complex (compound) statements are all built up by joining statements
together using LOGICAL CONNECTIONS. we have ∧,∨,→,←,∼. Where ∼ is the only unitary
connector and others are binary.

Atomic vs Molecular A statement is Atomic if it has no logical connector and is molecular
otherwise. We use P-Z letters to represent atomic statements Here is an example: You can
have fries or salad. ≡ P ∨Q. Then, P is “You can have fires” and Q is “You can have salad”.
Notice that we are following the definition that P and Q are statements.

Informal Notation Hierarchy 1 We shall see this through some examples:

• In official notation, we need (P ∨Q) while it is safe to drop the parenthesis.

We can check if a statement is official or informal if it has the same number of brackets as binary
connectors in the statement. If you see a bracket around a unitary connector, the sentence is not
well-formed. Right Most Rule We say the rightmost connector in a sentence with connectors
of the same level the main connector.

3 Truth Tables

3.1 Summary

First we remark that we are here talking about binary operators, so they will have and only
have two operands. We have the following to consider:

• Logical OR (∨) is true when either one of the operands is true. It evaluates to false
otherwise.

• Logical AND (∧) is true when both of the operands are true and false otherwise.

1We use this Informal notation because the formal one is cumbersome. But in order to use the informal one,
we have some conventions to follow.
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• Implication (→) is true in two cases. The first case is when the first operand is false
and second case is when both operands are true.

• Double implication, Iff (↔) is true when either both operands are true or when both
operands are false.

• Negation (∼2) is true when the operand is false and false otherwise.

3.2 Semantic Properties in Truth Tables

• Tautology if always true

• Contradiction if always false

• Contingent if mixed

• Consistent if there exists a row where the conclusion is all true

• Inconsistent if all rows are not all true, negation of the consistent

• Logically equivalent if two sentences have the same truth table

3.3 Full truth tables

Example: 3 evaluate (P∧ ∼ Q) ∨ R. ∼ R ∨Q. ∴∼ P → Q. Notice that this is equivalent to
evaluating

(((P∧ ∼ Q) ∨R) ∧ (∼ R ∨Q)) →∼ P → Q

4 Addressing Ambiguity in Symbolization

4.1 Restrictive and Non-Restrictive Clauses

We shall see this through an example

• Cats that scratch terrifies me ‘Cats that scratch’ is a restricted subject compared to
just ‘cats’.

• Cats, which scratch, terrifies me ‘Cats, which scratch’ is a non-restricted claim about
cats, so essentially we are saying two sentences: the first one is that ‘Cats terrify me’ and
‘Cats scratch’. (The which part is an inserted clause describing the subject before it.)

4.1.1 Symbolization of Non-Restrictive Clauses

In symbolization of non-restrictive sentences, we simply treat the clause and the main sentence
as two separate sentences and use logical and to connect them. (Two concurrent event)

4.1.2 Symbolization of Restrictive Clauses

We have to introduce a premise (conditional statement) to address the descriptive part.

2Or in this course, we may see ∼
3This example was adapted from Scharer 4.4 EG3.
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4.1.3 Example

Consider the sentence “Having gasoline, which is smelly, is a necessary condition for my car to
run, and in that case I’m going to Vegas.” and we define the following: W: Gasoline is smelly.
X: I have gasoline. Y: My car runs. Z: I’m going to Vegas. Solution: We first extract the
which clause out from the sentence since as we mentioned before this is just another concurrent
sentence (use logical and to connect). The necessary condition part is easy (Y → X). The
last ‘in that case’ part is a little bit tricky and we have rule for it (stated below), the correct
interpretation is (Y → Z). Summarizing what we did, the entire sentence could be symbolized
as W ∧ ((Y → X) ∧ (Y → Z))

4.1.4 “In that case” treatment

In english language, when we say ‘bar foo, and in that case baz’ the ‘case’ always refer to the
thing mentioned immediately before. So in our example ‘foo’ would be reason for ‘baz’.

5 Derivations in Sentential Logic

Full truth tables are impartial when we have a long sentence to check validity and it turns out
that derivation is a nice and simple way to achieve such goal.

5.1 Ten Basic Rules

Types of Rules

• Elimination Rule remove the connective (Elimination Rules are Automatic Moves)

• Introduction introduce the connective

5.1.1 Modus Ponens (MP)

φ → ψ, if we know φ, then it is reasonable to say ψ

5.1.2 Modus Tollens (MT)

φ → ψ then ∼ ψ →∼ φ, aka contrapositive

Fallacy

If we deny the antecedent or affirm the consequent, that doesn’t tell us anything!

5.1.3 Double Negation (DN)

∼∼ φ ≡ φ. Negating a statement two times is the same as the statement itself.

5.1.4 Repetition (R)

φ → φ If you know φ then you know φ

5.1.5 Conjunction

Simplification (S or SL/SR) If I know φ ∧ ψ then I know φ and I know ψ
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Adjunction (ADJ) If know φ and I know ψ then I know φ ∧ ψ

5.1.6 Disjunction

Modus Tollendo Ponens (MTP) If I know φ ∨ ψ and I know ∼ φ then I know ψ. WLOG
the other way around is also coorect.

Addition (ADD) If I know φ then I know φ ∨ ψ. WLOG the other way around is also true.

5.1.7 Biconditional

Biconditional-Conditional (BC) If I know φ ↔ ψ then I know that φ → ψ and ψ → φ

Conditional-Biconditional (CB) If I knwo φ → ψ and ψ → φ, then (by definition) I know
φ ↔ ψ

5.2 Basic Derivations

5.2.1 Examples of rules above

Let’s see the Modus Tollens in action

∼ (S ∨ P ) →∼ R. R. so S ∨ P

THIS IS INCORRECT! We have to take the rules “as is”, since we are constructing a contra-
positive, we will have ∼∼ (S ∨ P ) as our conclusion. Here is an example of a correct usage of
Modus Tollens

∼ P →∼ (S → Z). ∼∼ (S → Z) so ∼∼ P

Take away: We can only apply rules “as they are” so the double negation, for example, only
works for statements that are of the form ∼∼ (complicated stuff) we can’t jump over any step,
we have to write down all the steps.

5.2.2 Justification Types

There are three things that we can do here: 1.Restate any of the given premises. 2. Use any of
the aforementioned rules (write down the lines that we used the rules on and the abbreviation
of the rule that we used) 3. Direct Derivation: usually an indicator of arriving at the final
conclusion.

5.2.3 Example (S3.3 E2a)

Consider the problem P → Q. R →∼ Q. ∼ S → R. P. so S.
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1. show S

2. P → Q Pr1

3. P Pr4

4. Q 2,3,MP

5. R →∼ Q Pr2

6. ∼∼ Q 4,DN

7. ∼ R 5,6,MT

8. ∼ S → R Pr3

9. ∼∼ S 7,8,MT

10. S 9,DN

11. 10,DD

12. < neglect this line >

5.2.4 Example (S3.3 E2b)

Consider the problem Y. X → (Y → Z). ∼ X →∼ W. W. so ∼∼ Z

1. show ∼∼ Z show conclusion

2. ∼∼ W Pr4, DN

3. ∼ X →∼ W Pr3

4. ∼∼ X 2,3,MT

5. X 4, DN

6. Y → Z 5, Pr2, MP

7. Y Pr1

8. Z 6,7,MP

9. ∼∼ Z 8,DN

10. 9,DD

11. < neglect this line >

5.2.5 Available Lines

In doing a proof, we want to keep track of what is available for us to use:

• Premises, we can always use the premises

• Unboxed lines that is not a show line

• N.B. A crossed unboxed show line is available (something that we have already shown)

5.2.6 Completeness of a Derivation

• Every show line is crossed off (goals complete)

• All lines that are not show lines are boxed off (subproof complete)

• Every line except show lines is properly justified (state the reasons for derivations of each
step)
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5.2.7 Abbreviations

• Don-not restate the premises

• Do multiple moves in one line

Here is an example of using the abbreviations in action. Consider the example (P →∼ Q) →
(∼ R → S). ∼ S. ∼ (P →∼ Q) → T.T → S so R

1. show ∼∼ Z show conclusion

2. ∼ T P2, P4, MT

3. P →∼ Q 2, P3, MT, DN

4. ∼ R → S 3, P1, MP

5. R 4, P2, MT, DN, DD

6. < neglect this line >

5.2.8 Conditional Derivation (Hypothetical Reasoning)

We have seen above are all direct derivations, there are two more types of derivations com-
mon. They are Conditional Derivation and Indirect Derivation. Lets take a look at conditional
derivation here. The general format of this type of proofs is φ → ψ. To prove a conditional, we
assume φ and then prve that ψ follows.

Example Consider the problem T → S. ∼ T →∼ R.so R → S

1. show R → S

2. R ACD (Assume antecedent)

3. show S show consequence

4. ∼∼ R 2, DN

5. T 4, P2, MT, DN

6. S P1, 5, MP, DD

7. 3, CD(Conditional Derivation)

8. < neglect this line >

Caveat: It is not required to write the derivation as a subproof, we can also carry the moves
in just one layer and state on which line we achieved a conditional derivation

5.2.9 Indirect Derivation (Reductio ad Absurdum)

The question takes the following form “Show φ”. If we assume ∼ φ and derive a contradiction,
then our assumption must be false.

Example Consider the problem P →∼ Q.R → Q. ∼ R →∼ P. so P
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1. show ∼ P

2. P AID(Assume ID)

3. ∼ Q 2, P1, MP

4. ∼ R P2, 3, MT

5. ∼ P 4, P3, MP

6. 2, 5, ID (Indirect Derivation / Reductio ad Absurdum)

7. < neglect this line >

5.2.10 Breaking down show lines

• Look at your most recent show line

• If it’s of the form φ → ψ, start a CD

• If it’s any other form, start an ID

This works because our system allows mixed derivations!

Theorems

Definition: A Theorem is a tautology. And being a tautology means it could be derived from
any set of premises, even including ∅ as the premise set.

5.3 Derived Rules

There are two types derived rules: negation of blah rules (NC, NB, and DM) and situational
rules.

5.3.1 Negation of Condition (NC)

If have a negation of a conditional statement, then

∼ (φ → ψ) ≡ φ∧ ∼ ψ

This is essentially a ‘proof by counterexample’

5.3.2 Negation of Biconditional (NB)

∼ (φ ↔ ψ) ≡ (φ ↔∼ ψ) ≡ (∼ φ ↔ ψ)

5.3.3 De Morgan’s Laws (DM)

∼ (φ ∨ ψ) ≡∼ φ∧ ∼ ψ

∼ (φ ∧ ψ) ≡∼ φ∨ ∼ ψ

5.3.4 Seperation of Cases (SC)

If I know φ ∨ ψ, φ → χ, and ψ → χ, then it must be the case that χ. Special Case of SC:
Since in the generic SC, we didn’t specify what our φ and ψ need to be, so it we can take φ = ξ
and ψ =∼ ξ. In this case, ψ∨φ ≡ ξ∨ ∼ ξ is trivially true, and hence it must be the case that χ.
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5.3.5 Conditional as Disjunction (CDJ)

We have already seen this when symbolizing ‘unless’, but for completeness, I shall present them
here.

φ → ψ ≡∼ φ ∨ ψ

φ ∨ ψ ≡∼ φ → ψ

6 Predicate Logic

Although our system of sentential logic is great and powerful, it is not quite strong enough since
it doesn’t allow assessment of logic within the sentence itself. What we need is the predicate
logic, as an extension to the sentential system.

6.1 Sub-Sentential Logic

The discussion of subjects and predicates: subjects specify what we want to talk about (as its
name indicates) and predicates allows to describe the subject in some certain way.

6.1.1 Subjects

• Singular Terms Proper names (Joe, Steve), definite descriptors (the person in the front
of the class), pronouns (he/she)

• General Terms Universally quantifies terms and Existentially quantified terms

6.1.2 Predicates

Different types of predicates are related to number of subjects that the predicate is related to.

• Single Place Only one subject, description of the one and only subject. For example
‘Raina is evil. Raina is a student of Plato’

• Two-Place Usually describes the relationship between two subjects. For example ‘Joe
likes Marry’

• Three-Place Common in mathematics

• so on. . .

6.2 Four Types of Statements

• Universal Affirmative (A) All X are Y

• Existential Affirmative (I) There exists X that is Y

• Universal Negative (E) No X is ever Y

• Existential Negative (O) There exists X that is not Y

10



6.3 Deciding Universal vs Existential

6.3.1 Case where both makes sense

There is generally no right or wrong answer to this question. For example, the sentence ‘Not
all teachers dislike marking’ could be the negation of a universally quantified sentence while we
can also phrase it as there exists some teacher who likes marking. These two formulation of the
sentence are both correct and in fact equivalent.

6.3.2 Case where only one way to interpret

Consider the sentence ‘Some animals are dogs’. The only way that we can formulatethis is ‘there
exists some animal, who is a dog’. This case is rather rare.

6.4 Single-Place Predicate Logic Symbolization

6.4.1 Quantifier Symbols

Two symbols for the universal quantifier is ∀ while existential quantifier uses the symbol ∃.

6.4.2 Subject Symbols

• Individual constants or names are marks using lower case letters a− h

• Variable are written as lower case letters i − z. Notice that this is different from the
previous case. For example, when I don’t want to specify any name for the subject (i want
to pick a generic one) I will need a variable.

• Operation Letters is also a− h, but possibly with number places as superscript.

6.4.3 Predicate Symbols

• Predicates are marked with upper case letters A− O (may have number places as super-
script in case of non-single place predicates)

• The identity sign (=) is rather special. More on this latter.

6.4.4 Examples

We use lower case letters or brackets (like format statements) to indicate the position of insertion
of the subject. Consider the sentence ‘Tina Fey is amazing’ and define b := Tina Fey and A : {1}
is amazing. Then the original sentence can be symbolized as Ab.

6.4.5 Canonical Form of the Universally Quantified Sentence

The sentence all Φ’s are Ψ’s can be represented in the following canonical form:

∀α(Φα → Ψα)

∀α(Group α → Property α)
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6.4.6 Formulation of Restricted Clause

Consider the sentence ‘All Dogs with cube heads are cute’, and define the following D1: {1} is
a dog. C1: {1} is cute. F 1:{1} has a cube head. There are two way of symnbolizing it, the first
one is rather straight forward

∀y(Dy ∧ Fy → Cy)

However, we can also address this using two layers restrictions, like the follow

∀y(Dy → (Fy → Cy))

6.4.7 Canonical Form of the Existentially Quantified Sentence

Ways to say ‘Some Φ’s are Ψ’s’ OR ‘At least one of Φ is Ψ’ OR ‘There is a Φ that is a Ψ’. It
could be formulated as follows

∃α(Φα ∧Ψα)

i.e.,
∃α(Group α ∧ Property α)

6.5 Single Place Derivations

6.5.1 Substitution

Replace a bound variable to a free one. This transforms a symbolic sentence to a symbolic
formula. Notice that All instances of α are replaced with a singular term β in the
following puppy example

∀αφα → φβ

∃αφα → φβ

6.5.2 Universal Instantiation (UI)

This rule describes the substitution of ∀αφα to φβ. This could also be described as the ∀
elimination rule. There is a restriction that comes with this rule which is “Restriction: β
could not be a bound variable within φα”. In naive words, this means we can’t substitute in a
variable that is already quantified in the inner scope.

Example of Proof using UI Suppose I want to show that ∀x(Fx → Gx).Fa.soGa.. The
general format is still the same as proofs in sentential logic. We will do

1. show Ga

2. Fa → Ga, Pr1, UI

3. Ga Pr2, 2, MP

4. 3, DD

6.5.3 Existential Instantiation (EI)

If we have a ∃αφα, we can replace it with φβ. The rule comes with a Restriction: β must be
a arbitrary term4 (i through z) that does not occur in ANY previous line or premise. This will
also be referred to ass the ∃eliminationrule.

4Arbitrary Term: Weak condition is ‘A term that is not free in an unboxed line’, while the strong condition
is ‘A term that does not appear in any previous line or premise’
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6.5.4 Golden Rule

EI first, UI to MATCH. Always match UI to something useful. There is one exception to this
rule, which is the case of Buried Existential.

6.5.5 Example

Consider the question

∃x(Fx∨ ∼ Gx).∀y(Fy → Ay).∀zGz. So ∼ ∀x ∼ Ax

1. show ∼ ∀x ∼ Ax

2. ∀x ∼ x AID

3. Fi∨ ∼ Gi P1, EI

4. Gi P2, UI

5. Fi 4, DN, 3, MTP

6. Fi → Ai P2 UI/i

7. Ai 5, 6, MP

8. ∼ Ai 2, UI

9. 7, 8, ID

10. < neglect this line >

6.5.6 Existential Generalization (EG)

If I know φβ then I can conclude ∃αφα. This rule does come with two restrictions

• Restriction 1: α cannot be a bound variable within φβ

• Restriction 2: If α is different from β, then α cannot be free within φβ

This rule is also referred to as the ∃ Introduction Rule. I puppy example would be to say
‘Steven enjoys the notability app’, then for sure ‘there exists something, something is a person
and something enjoys the notability app’. There are certain difference between generalization
rules and Instantiation rules, we shall take a look at some examples on generalizing ‘Fa ∧Ga’

• ∃x(Fx ∧Gx) generalizing both a’s to x

• ∃y(Fy ∧Gy) generalizing both a’s to y

• ∃x(Fx ∧ Ga) generalizing the first a to x. Notice that this definitely incorrect in the
Instantiation settings, but in fact this is valid here in generalization.

• ∃z(Fa ∧Gz) generalizing the second a to z

• ∃x(Fa ∧Ga) generalizing to x. This is a weird one.

6.5.7 Universal Derivation (UD)

This is a technique rather than a rule which allows the introduction of the universal quantifier.
To add a universal quantifier, we can simply do a ‘show’ of the statement, with no premise
whatsoever. The general format will be
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• Show ∀αφα

• Show φα

• CD/ID/DD

• ∀αφα, UD

The restriction of this technique is ‘α cannot appear unbound in any previous available line, or
in a premise used in an available line’. This adds to our list of derivation skills: DD, ID, CD.
Now we have the fourth way UD.

Example on UD (Double) This is considered to be a double UD example because we have
to do UD twice. The example is

Ha. ∃w∃z(Hz∧ ∼ Gw) → ∀xAx. ∃i ∼ Ai So ∀x∀y(Fx → Gy)

6.6 Quantifier Negation (QN)

A quantifier or a negation of quantifier must be the main operator.

• ∼ ∀αφ ≡ ∃α ∼ φ

• ∼ ∃αφ ≡ ∀α ∼ φ

7 Multi-place Symbolization

In this section, we focus on predicates that have multiple subjects. In common english, we deal
with this all the time and we shall now see how to use them formally.

B3 : {1} borrows {2} from {3}

Above is an example where we have to use three subjects to instantiate.

7.1 Syntactical Difference

• Use brackets for multi place predicates, for example Fx. Gy. A(xy) . B (ywza).

• Order Matters: L(ab) ∕≡ L(ba), sometimes they are the same and often they don’t
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