
Miscellaneous notes in Algorithm Design, Analysis and

Complexity

c Tingfeng Xia

Fall 2019, modified on November 30, 2019

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

Contents

1 6.046J Linear Programming: LP, Reductions, Simplex 2
1.1 Example: Politics, example of optimization . 2
1.2 Standard Form for LP . 2
1.3 Certificate of Optimality . 3
1.4 LP Duality . 3
1.5 Converting to Standard Form . 3

1.5.1 Case 1: Minimize Goal . 3
1.5.2 Case 2: Missing Non-negative Constraint . 3
1.5.3 Case 3: Equality Constraint . 3
1.5.4 Case 4: GEQ Constraint . 4

1.6 Max-Flow using LP . 4
1.7 Shortest Path using LP . 5
1.8 Simplex Algorithm . 5

1.8.1 Work Flow . 5
1.8.2 Time Complexity . 5
1.8.3 Procedure Example . 6

2 6.006 Computational Complexity 7
2.1 Complexity Classes . 7

2.1.1 Theorem: Almost All Decision Problems are not in R 7
2.2 The Big Conjecture . 8
2.3 Reductions . 8

3 6.046J Complexity: P, NP, NP-Completeness, Reductions 8
3.1 Definitions . 8
3.2 Class Relationships . 9
3.3 Proving NP-Completeness . 9

1

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

CONTENTS

3.4 3 SAT . 9
3.5 3-Dimensional Matching (3DM) . 10
3.6 Subset Sum . 11
3.7 Partition . 11
3.8 My Thoughts . 12

4 6.046J Approximation Algorithms 13
4.1 Approximation Algorithms and Schemes . 13

5 Problem Excerpts from Past Stuff 14
5.1 Properties of Reductions and Decision Problems . 14

5.1.1 Question 1 . 14
5.1.2 Question 2 . 14

6 Collection of Approximation Algorithms 14
6.1 The TSP using MST . 14

https://tingfengx.github.io/uoftnotes/ Page 2

https://tingfengx.github.io/uoftnotes/

1 6.046J LINEAR PROGRAMMING: LP, REDUCTIONS, SIMPLEX

1 6.046J Linear Programming: LP, Reductions, Simplex

1.1 Example: Politics, example of optimization

• Goal: You want to buy elections and you want to minimize the total amount of money spent.

• How to campaign to win an election? Manager estimates votes obtained per dollar spent.

Policy Urban Suburban Rural

x1 Build Roads -2 5 3
x2 Gun Control 8 2 -5
x3 Farm Subsidies 0 0 10
x4 Gasoline Tax 10 0 2

• Want a majority for each demographic.

Population 100,000 200,000 50,000
Majority 50,000 100,000 25,000

• Want to win by spending the minimum amount of money.

• Algebraic Setup: Let x1, x2, x3, x4 denote the dollar spent per issue.

!
""""""#

""""""$

minimize x1 + x2 + x3 + x4

subject to (1) − 2x1 + 8x2 + 0x3 + 10x4 ≥ 50000

(2) 5x1 + 2x2 + 0x3 + 0x4 ≥ 100000

(3) 3x1 − 5x2 + 10x3 − 2x4 ≥ 25000

(4) x1, x2, x3, x4 ∈ R≥0

Notice that constraint (4) above denotes there is no negative advertisation.

• The optimal solution is !
"""#

"""$

x1 = 2050000/111

x2 = 425000/111

x3 = 0

x4 = 625000/111

and the objective optimized has value 3100000
111

1.2 Standard Form for LP

• Minimize or Maximize1 linear objective function, subject to linear inequalities or equations

• Variables x = [x1, x2, . . . , xn]
T , and the objective function is c ·x = c1x1+ · · ·+ cnxn and the

inequalities A · x ≤ b2 and x ≥ 03

1In the standard form, we consider the maximization problem
2In general, this could have been ≤,≥,= but for the standard form, we consider ≤
3Meaning that each of the slots in the vector should be greater than zero.

https://tingfengx.github.io/uoftnotes/ Page 3

https://tingfengx.github.io/uoftnotes/

1 6.046J LINEAR PROGRAMMING: LP, REDUCTIONS, SIMPLEX

1.3 Certificate of Optimality

Is there a short certificate? 4 Consider

25/222(1) + 46/222(2) + 14/222(3)

, where we can plug in the equations and simplify to

x1 + x2 + 140/222x3 + x4 ≥ 3100000/111

But notice that

3100000/111 ≤ x1 + x2 + 140/222x3 + x4 ≤ x1 + x2 + x3 + x4

so the solution must be optimal!

1.4 LP Duality

What is this? This is essentially saying that what we did above was no coincidence, and we can
always to this for a linear program.

Theorem For all standard form of LP (called a primal form) there exists a dual form that is
equivalent to the primal. Specifically

maximize c · x
subject to Ax ≤ b

x ≥ 0

%
"&

"'
≡

!
"#

"$

minimize b · y
subject to ATy ≥ c

y ≥ 0

1.5 Converting to Standard Form

1.5.1 Case 1: Minimize Goal

Suppose that I want to minimize −2x1 +3x2, then I can just convert the problem into maximizing
the negative of the equation. This case should be easy.

1.5.2 Case 2: Missing Non-negative Constraint

Suppose xj doesn’t have a non-negative constraint. In this case, we will replace xj with x′
j − x′′

j

such that x′
j ≥ 0 ∧ x′′

j ≥ 0.

1.5.3 Case 3: Equality Constraint

Suppose the constraint was x1 + x2 = 7, then we can break it into x1 + x2 ≤ y ∧ −x1 − x2 ≤ −7.5

4For the problem of Politics described above, notice that this is not a general certificate, it only works in this
specific case.

5Notice that we did this in this specific way because we want to have this in out standard form where the constraint
was a ≤. The second constraint here, if we multiply it by −1 on both sides, is equivalent to saying x1 + x2 ≥ 7

https://tingfengx.github.io/uoftnotes/ Page 4

https://tingfengx.github.io/uoftnotes/

1 6.046J LINEAR PROGRAMMING: LP, REDUCTIONS, SIMPLEX

1.5.4 Case 4: GEQ Constraint

We have done this above, translate this into a less than or equal tot problem by multiplying (−1)
on both sides (which will flip the inequality sign).

1.6 Max-Flow using LP

Consider some network N := G = (V,E), and denote the flow in the network to be f . the function
c(·) returns the capacity for an edge. The problems then breaks into

!
"""#

"""$

maximize
(

v∈V f(s, v) = |f |
subject to f(u, v) = −f(v, u) ∀u, v ∈ V

(
v∈V f(u, v) = 0 ∀u ∈ V \ {s, t}

f(u, v) ≤ c(u, v) ∀u, v ∈ V

where we notice that the above problem is entirely linear and thus could be solved using a linear
programming algorithm.

Implementation Seen on Slides Here is the implementation seen on the class slides, which
is more intuitive. Recall that a network flow’s input is a directed graph G = (V,E) with edge
capacities c : E → R≥0 and we output the maximum flow on the graph. A flow f is valid if

• Capacity Constraint: ∀(u, v) ∈ E : 0 ≤ f(u, v) ≤ c(u, v)

• Flow Conservation: ∀u ∈ V \ {s, t} :
(

(u,v)∈E f(u, v) =
(

(v,u)∈E f(v, u). (Notice that the

flow conservative formulation is not true for the source and sink node)

and we wish optimize the goal

Maximize v(f) =
)

(u,v)∈E

f(s, v)

Time Complexity This generalization uisng LP is much slower than the network flow algorithms
(Ford-Fulkerson, Edmonds-Karp, et cetra) in single commodity network flow.

Multi-Commodity Flow Consider the case where there are two commodities flowing in the
network (f1, c1, f2, c2). In the case where c1 is independent from c2, it is not very interesting, we
can just run the network flow algorithm twice to find two maximizers separately. In the case where
there is a single capacity constraint c6, the problem ceases to be a simple network flow problem.
However, it is still easy to come up with a LP formulation that describes the maximization.

6A toy example to give would be given a certain road where some cars are running on the road and the road have
a total capacity for all types of cars combined

https://tingfengx.github.io/uoftnotes/ Page 5

https://tingfengx.github.io/uoftnotes/

1 6.046J LINEAR PROGRAMMING: LP, REDUCTIONS, SIMPLEX

1.7 Shortest Path using LP

• d[v] represents the shortest path from the source to v7

• w(u, v) means the single edge (u, v)’s weight

• The shortest path to some vertex v which is a descendent of u is at least shorter than or equal
to the existing path that goes from source to u plus the edge (u, v)

• The shortest path from source to source is zero

• Recall the △-inequality here

This yields the formulation

!
""""""""#

""""""""$

maximize d[v]

subject to d[v]− d[u] ≤ w(u, v) ∀(u, v) ∈ E

d[s] = 0

d[v]− d[u1] ≤ w(u1, v)

d[v]− d[u2] ≤ w(u2, v)

d[v] = min(. . . , . . .)

Notice that although we are trying to minimize the distance from source to the node v, we have
to put this as a maximization problem because otherwise the trivial solution of 0 will work! Our
formulation didn’t capture the insight “We DO want a path”.

Key Insight of MAX The above formulation already captured the minimization problem with
the min in the last constraint and hence we want to push up as hard as we can in finding a solution.
(We are ANDing together all the constraints and have chosen the one that is the smallest)

1.8 Simplex Algorithm

1.8.1 Work Flow

1. Represent LP in slack form

2. Convert one slack form into an equivalent whose objective value has not decreased and has
likely increased (no guarantee of increase)

3. Keep going until the optimal solution becomes obvious

1.8.2 Time Complexity

This is, unfortunately, an exponential iterative algorithm. Denote the number of constraints using
m and n as the number of variables then the algorithm has worst case time complexity

T (m,n) ∈ O
**

m+ n

n

++

7It might be helpful to recall that in the Dijkstra’s Algorithm d[v] ← ∞ initially and then it was decremented
through out the algorithm until the minimum was reached.

https://tingfengx.github.io/uoftnotes/ Page 6

https://tingfengx.github.io/uoftnotes/

1 6.046J LINEAR PROGRAMMING: LP, REDUCTIONS, SIMPLEX

1.8.3 Procedure Example

Consider the problem !
""""""#

""""""$

maximize 3x1 + x2 + x3

subject to x1 + x2 + x3 ≤ 30

2x1 + 2x2 + 5x3 ≤ 24

4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

The Slack From 8 The original variables (x1, x2, x3 here) will be called non-basic variables and
we will here introduce three basic variables9 x4, x5 and x6. The original problem will then be

!
"""#

"""$

z = 3x1 + x2 + x3

x4 = 30− x1 − x2 − x3

x5 = 24− 2x1 − 2x2 − 5x3

x6 = 36− 4x1 − x2 − 2x3

%
"&

"'
(I)

It is worth mentioning that now the non-negativity constraint becomes R6 ∋ x ≥ 0, we have
“added”10 three more new variables that are also non-negative.

Basic Solution Set all the non-basic variables to zero, and then compute the values of the basic
variables. The objective function will be z = 3(0) + 1(0) + 1(0) = 0. This is a trivial starting point
and we can think of this solution as R6 ∋ x = (0, 0, 0, 30, 24, 30)

Pivoting

• Select a non-basic variable xe whose coefficient in the objective function is positive

• Increment the value of xe as much as possible without violating any of the constraints.

• Varaible xe becomes basic, some other variable becomes non-basic. (Value of the other basic
variable and the objective function may change.)

Running the Procedure

• Suppose we selected the non-basic variable xe = x1 and we want to increase the value of x1.

• The third constraint is the tightest one in (I). Rearrange the terms we have

x1 = 9− x2/4− x3/2− x6/4 (1)

8Here the word ‘slack’ means how much room is still left
9This amount will be equal to the number of constraints that the original problem have

10This was quoted because we didn’t actually introduce any new constraints! In fact, they are pair-wise equivalent
to the original ones.

https://tingfengx.github.io/uoftnotes/ Page 7

https://tingfengx.github.io/uoftnotes/

2 6.006 COMPUTATIONAL COMPLEXITY

• Then we will rewrite the other equations with x6 on the RHS. i.e. replace all occurrences of
x1 with (1) above. Important: What has happened is that x1 and x6 has exchanged their
roles. x1 was non-basic and will now become basic and is the reverse for x6. The following is
the re-written result:

!
"""#

"""$

z = 27 + x2/4 + x3/2− 3x6/4

x1 = 9− x2/4− x3/2− x6/4

x4 = 21− 3x2/4− 5x3/2 + x6/4

x5 = 6− 3x2/2− 4x3 + x1/2

%
"""&

"""'
(II)

Point of the above operation: Recall the original basic solution was (0, 0, 0, 30, 24, 36),
which certainly satisfies (II) above and have objective value

27 +
1

4
(0) +

1

2
(0)− 3

4
(36) = 0

For the basic solution for (II), we set the non-basic values to zero which will yield the solution
(9, 0, 0, 21, 6, 0)11. The objective value is now 3x1 + x2 + x3 = 9× 3 = 27.12

• Repeat the above procedure. In this case, 2 more iterations is required. We will know it is
the time to stop when the objective function is some constant followed by negative copies of
non-basic variables (which are non-negative) in which case the objective function cannot be
increased anymore. We call this the convergence of the Simplex Algorithm.

2 6.006 Computational Complexity

2.1 Complexity Classes

• P Set of all problems that can be solved in less than or equal to polynomial time.

• NP Decision problems that can be solved in polynomial time via a lucky algorithm.

• NP-Hard As hard as every problem in NP.

• NP-Complete NP ∩ NP-Hard.

• EXP Set of all problems that can be solved in less than or equal to exponential time.

• R Set of all problems that can be computed/solved in finite time

2.1.1 Theorem: Almost All Decision Problems are not in R

This might be counter-intuitive but is mathematically valid. We are here limiting our scope to
decision problems only, which is defined as ‘problems that outputs yes/no (some binary outcome)’.
We will now prove this result, Proof:

11The solution was computed by setting variables on the RHS of the equations (which are the non-basic vars now)
to zero in (II)

12The original objective function was used here

https://tingfengx.github.io/uoftnotes/ Page 8

https://tingfengx.github.io/uoftnotes/

3 6.046J COMPLEXITY: P, NP, NP-COMPLETENESS, REDUCTIONS

• First, note that a program, what we write on a computer, is just a bianry string in some
sense. But if it could be represented in a binary number (which might be a very big one), it
is just a natural number in base 2. This is our space of programs.

• Next, a decision problem is a function that is f : input → {YES,NO}. But for sure the input
for a program is some string which could be converted into binary which is again some natural
number. Hence, our f is one such that f : N → {YES,NO}.

• Above, we have argued that a program is a finite string of bits, while a decision problem is a
infinite string of bits13.

• Hence, decision problems ∈ R while programs is ∈ N. But |R| ≫ |N|! So there is not enough
program to solve all the decision problems.

!

2.2 The Big Conjecture

P ∕= NP ≈ “You can’t engineer luck”

2.3 Reductions

The idea is to convert some problem A into a problem B. When we can reduce A to B, we say
B is as hard as A.

Example I To solve unweighted shortest paths, we can use a BFS. But for sure we can also solve
this using Dijkstra by setting all the weights to one. This would be an example of a reduction.

Example II Suppose we want to, again, solve the shortest path (weighted) problem but we are
only given the tool of ‘min-product path’14. You can do this by taking logs, after which products
become sum!

3 6.046J Complexity: P, NP, NP-Completeness, Reductions

3.1 Definitions

• NP Given any instance I of problem P and witness W , if there exists a verifier V so that
given the ordered pair (I,W) as input, V returns “yes” in polynomial time if the witness
proves that the answer is “yes” and “no” in polynomial time otherwise, then P is in NP.
Important: Notice that to show that a problem is in NP, we have to consider all possible
certificates (∀ quantified) and for each certificate there should exist some verfier (which could
certainly be different each time).

• NP-Completeness A problem X is NP-Complete if X∈NP and X∈NP-Hard

13For different inputs, the output may or may not be the same but importantly is never stops, i.e. there always
exists the next problem.

14That is, minimize the product of the weights along the path

https://tingfengx.github.io/uoftnotes/ Page 9

https://tingfengx.github.io/uoftnotes/

3 6.046J COMPLEXITY: P, NP, NP-COMPLETENESS, REDUCTIONS

• NP-Hard X is NP-Hard if every problem Y∈NP reduces to X.

• Reduction from problem A to a problem B = poly-time algorithm converting A inputs to
some equivalent B inputs.15

3.2 Class Relationships

3.3 Proving NP-Completeness

From a algorithm perspective, the question is ‘How to prove X is NP-Complete?’

1. Show that X in NP. (Give a non-detrministeic algorithm OR give a certificate and verify.)

2. Reduce from some known NP-Complete problem Y to your problem X. Important: Always
reduce from the thing that you know is hard to the thing that you want to show is hard. This
direction matters.

3.4 3 SAT

Given a boolean formula, which is an AND of triplet ORs. A clause is one of the triplet ORs and
a literal is one element in a triplet OR. The question is does there exist an assignment of variables
such that the final result (the entire boolean formula) evaluates to true.

Intuition behind the Proof of NP-Completeness of 3 SAT

• Software ≈ Hardware, you can build a circuit for a software/algorithm using logic gates

• If I have a circuit, then I can convert that into a boolean formula.

• (Fun Fact; Less obvious) If I have formula, then I can convert it into the form 3 SAT problem
requires.

• Then the ‘witness/oracle’ is described by the literals in the formula

• Then deciding whether there’s some way to set the literals to make the formula true is the
same thing as saying ‘Is there some certificate where the verifier says yes’, which is the same
thing as saying that the problem has answer yes.

15Two important observations here: 1. if B in P then A in P; 2. if B in NP then A in NP

https://tingfengx.github.io/uoftnotes/ Page 10

https://tingfengx.github.io/uoftnotes/

3 6.046J COMPLEXITY: P, NP, NP-COMPLETENESS, REDUCTIONS

3.5 3-Dimensional Matching (3DM)

Problem Statement You are given disjoint sets X,Y and Z, each of size n. You are also given
triples T ⊆ X × Y × Z. The goal is to choose subset S ⊆ T such that every element ∈ X ∪ Y ∪ Z
is in exactly one s ∈ S.

Reducing From 3 SAT We will need the following three gadgets, namely the variable gadget,
the garbage collection gadget, and the clause gadget.

• In the variable gadget, the dots on the inner circle exists in only that gadget, and there is a
variable gadget for each and every variable.

• The reason that we have 2nxi sized16 variable gadgets is that here in the wheel we are only
allowed to choose all the T’s or all the F’s but not mixed. This way, we have twice the number
of needed variable connectors and then we choose half of them which is exactly what we need
for the gadget to work.

16Notice that here nxi counts all occurrences of the variable xi, including the xi’s

https://tingfengx.github.io/uoftnotes/ Page 11

https://tingfengx.github.io/uoftnotes/

3 6.046J COMPLEXITY: P, NP, NP-COMPLETENESS, REDUCTIONS

• The clause gadget has the two dots on the lower level local and the top three are connected to
the outer T/F dots on the variable gadgets. Notice that we are only allowed to choose one of
the three triangles in the gadget drawn. Importantly, the one choice guarantees the bottom
two nodes are chosen, meaning the clause is satisfied.

• Doing the above is not enough since then not all T/F nodes17 will be used which is problematic.
To solve this, we add a garbage collection gadget.

• The Garbage Collection Gadget has all the T/F nodes on its lower row, and the gadget itself
is repeated

(
x nx −#Clause times. This will help to connect all the unconnected nodes left

from the previous steps.

3.6 Subset Sum

Problem Statement Given n integers A = {a1, ..., an} and target sum t. Does there exist a
subset sum S ⊆ A such that

(
S =

(
ai∈S ai = t, i.e. adds up to a given sum.

Reducing From 3DM

• View numbers in base b = 1 + maxi nni
, a large enough base. The max part is the total

number of colliding ones and we are setting our base to be one larger than that so that there
will never be carries.

• Triple (xi, xj , xk) will be converted into 0000100001001000b where the 1’s are at the i, j, k-th
position in the number.

• The goal is to add up to some number 1111111111 =
(

i′ b
i

How does this reduction work? Notice that my goal now in base b is a bunch of ones, and I
am trying to add up to this number from numbers in base b composed of three 1’s and 0’s on the
rest positions. So, I need to guarantee that there is no collision meaning no two occurrences of 1
on the same position will be accepted. Then, the problem is essentially choosing non-overlapping
subsets that can add up to the target number which is exactly what 3DM solves. Q.E .D.†

Weakly NP-Hardness The numbers in the above reduction are giant. The number of digits
in the target number in base b have order O(n) digits. But, the actual values of the numbers are
exponential, and this is not allowed in a Strong NP-Hardness setting.

3.7 Partition

Problem Statement Given A = {a1, ..., an} integers, is there a subset S ⊆ A such that
(

S =(
S \A, i.e. the set is partitioned into two parts that adds up to the same number.

17That is, all the top three nodes in all the clause gadgets and all the nodes in the outer ring in the variable gadgets

https://tingfengx.github.io/uoftnotes/ Page 12

https://tingfengx.github.io/uoftnotes/

3 6.046J COMPLEXITY: P, NP, NP-COMPLETENESS, REDUCTIONS

Reducing From Subset Sum

• Let t denote the arbitrary target of my Subset Sum instance

• Let σ =
(

A

• Add an+1 = σ + t and an+2 = 2σ − t

• After adding the two terms described above, we first note that they can’t be on the same side
in the partition, because if they do then one side would have sum at least σ+ t+2σ− t = 3σ
which is way larger than σ, the total sum of all numbers.

• Now we know that these two numbers have to be on two sides of the partition, we notice that
if we add σ − t to the side that has an+1 = σ + t and add t to the other side, then both sides
will have sum 2σ, which is what we want.

• Starring at the above step, we notice that σ − t+ t = σ is the total sum of elements that we
want to add to two sides of the partition, which is exactly equal to the total sum of all the
original n elements!

• Then, if this partition problem could be solved, my subset sum of arbitrary target t can be
solved and this shows Subset Sum could be p-reduced to Partition.

3.8 My Thoughts

P-Reducibility A ≤p B means A is p-reducible to B. To show this is true, we have to take an
arbitrary input of A, and find a polynomial time conversion such that this input is now a appropriate
input for B. Then we will let B solve this problem for us, and we will need a polynomial time
conversion back from B’s solution to the required A’s.

Mario Reduced From 3 SAT We tried to show that 3 SAT ≤p Mario, i.e. 3 SAT is p-reducible
to Mario. Given any instance of 3 SAT problem18, we can build a respective level for Mario and
whether Mario dies or not will tell us if 3 SAT should return YES or NO.

Partition Reduced From Subset Sum (Subset Sum ≤p Partition) Given a Subset Sum prob-
lem, we add two elements into the set and give this as the input to the Partition solver. If the
partition solver was able to return a YES solution, then we know that the elements in the partitions
which contains the 2σ − t element (exclude the 2σ − t element) has subset sum equal to t which
means the Subset Sum could be solved by using Partition as a black box.

18By instance of a problem, we mean that the input of the problem, which will be translated to the input of
some other problem and from where the solution yielded will be converted back and thus act as the solution to ‘the
instance of a problem’.

https://tingfengx.github.io/uoftnotes/ Page 13

https://tingfengx.github.io/uoftnotes/

4 6.046J APPROXIMATION ALGORITHMS

4 6.046J Approximation Algorithms

4.1 Approximation Algorithms and Schemes

Approximation Ratio An algorithm for a problem of size n has an approximation ratio ρ(n) if
for any input, the algorithm produces a solution with cost c such that

max

*
c

copt
,
copt
c

+
≤ ρ(n)

Approximation Scheme takes as input ε > 0 and for any fixed ε, the scheme is a (1 + ε)-
approximation algorithm.

• PTAS (Probabilistic/Polynomial Time Approximation Scheme) is polynomial time in the
input size n but not necessarily polynomial in terms of ε. For example, something like
O(n2/ε).

• FPTAS (Fully Probabilistic/Polynomial Time Approximation Scheme) means polynomial
time in terms of both n and 1/ε. For example, something like O(n/ε2) belongs to this class.

https://tingfengx.github.io/uoftnotes/ Page 14

https://tingfengx.github.io/uoftnotes/

6 COLLECTION OF APPROXIMATION ALGORITHMS

5 Problem Excerpts from Past Stuff

5.1 Properties of Reductions and Decision Problems

5.1.1 Question 1

Give a detailed argument that for all decision problems D1, D2, D3, we have D1 ≤p D2 ∧ D2 ≤p

D3 =⇒ D1 ≤p D3.

Solution Let Ij be the set of all inputs to decision problems D1, D2 and D3. Assuming that
D1 ≤p D2 ∧D2 ≤p D3, there must exist functions f1 : I1 → I2 and f2 : I2 → I3 both of which is
computable in polynomial time. Define f3 : I1 → I3 by f3(x) = f2(f1(x)). Clearly this could be
computed in polynomial time. It is also clearly that

∀x ∈ I1, x ∈ D1 ⇔ f1(x) ∈ D2 ⇔ f2 (f1(x)) = f3(x) ∈ D3

and this concludes the proof.

5.1.2 Question 2

Suppose D′ is some NP-complete problem and D is any decision problem. What can we conclude
about D if we know that D′ ≤p D and D ≤p D′? Make the strongest claim you can and prove it.

Solution Theorem:

If D1 ≤p D2 and D2 ∈ P (or NP or coNP), then D1 ∈ P (or NP or coNP, respectively)

• We know that D′ ≤p D so D ∈ NP-HARD. Since we know D′ is NP-COMPLETE then in
particular it is in NP-HARD. (D is at least as hard as all NP-COMPLETE problems and it
can only be harder)

• We know that D ≤p D′ so D ∈ NP using the above theorem.

• Thus, D is in NP and in NP-HARD thus it is in NP-COMPLETE.

6 Collection of Approximation Algorithms

6.1 The TSP using MST

The Algorithm

• Consider v ∈ G.V as the node that the travelling sales man will start from and end up with
in the graph G.

• Use Prim’s Algorithm to construct a MST on G using v as the source node.

• In the output tree of the above step, list the preorder visit and output such ordering.

https://tingfengx.github.io/uoftnotes/ Page 15

https://tingfengx.github.io/uoftnotes/

6 COLLECTION OF APPROXIMATION ALGORITHMS

Claim: TSP using MST achieves 2-approximation under triangle inequality.

• Define a full walk of the visit as F , this includes the vertices when they are first visited
(explored) and the time the walk went back to that node.

• Consider the optimal TSP walk OPT . We know that |OPT | ≥ |MST |, this is due to the fact
that the minimum spanning tree is the lightest tree that consists of all the nodes in graph G.

• |F| ≤ 2 · |MST |, since we visited every edge of MST at most twice.

• The preorder traversal output of the above algorithm is less than the cost of the full walk F . In
algorithm, we print preorder walk as the output, where two or more edges of F are replaced
with a single edge. Notice that this step follows from our assumption that the triangular
in-equality is in effect.

Putting everything together, we have

2|OPT | ≥ 2|MST | ≥ |F| ≥ Preorder Walk Output

Q.E .D.†

https://tingfengx.github.io/uoftnotes/ Page 16

https://tingfengx.github.io/uoftnotes/

