
KNN Find k examples
!
x(i), t(i)

"
closest to the test instance x and then output majority argmaxtz

#k
r=1 δ(t

(z), t(r)). Define δ(a, b) = 1
if a = b, 0 otw. Choice of k: Rule is k <

√
n, small k may overfit, while large may under-fit. Curse of Dim: In high dimensions,

“most” points are approximately the same distance. Computation Cost: 0 (minimal) at training/ no learning involved. Query time
find N distances in D dimension O(ND) and O(N logN) sorting time.

Entropy H(X) = −EX∼p [log2 p(X)] = −
#

x∈X p(x) log2 p(x) Multi-class: H(X,Y ) = −
#

x∈X

#
y∈Y p(x, y) log2 p(x, y) Prop-

erties: H is non-negative, H(Y |X) ≤ H(Y ), X ⊥ Y =⇒ H(Y |X) = H(Y ), H(Y |Y ) = 0, and H(X,Y ) = H(X|Y ) + H(Y ) =
H(Y |X) +H(X)

Expected Conditional Entropy H(Y |X) = EX∼p(x)[H(Y |X)] =
#

x∈X p(x)H(Y |X = x) = −
#

x∈X

#
y∈Y p(x, y) log2 p(y|x) =

−E(X,Y )∼p(x,y) [log2 p(Y |X)] Information Gain IG(Y |X) = H(Y )−H(Y |X)

Bias Variance Decomposition Using the square error loss L(y, t) = 1
2 (y − t)2, Bias (↑ =⇒ under-fitting): How close is our

classifier to true target. Variance (↑ =⇒ overfitting): How widely dispersed are out predictions as we generate new datasets
Ex,D

$
(hD(x)− t)

2
%
=Ex,D

$
(hD(x)− ED [hD(x)] + ED [hD(x)]− t)

2
%

=Ex,D

$
(hD(x)− ED [hD(x)])

2
+ (ED [hD(x)]− t)

2
+ 2 (hD(x)− ED [hD(x)]) (ED [hD(x)]− t)

%

=Ex,D

$
(hD(x)− ED [hD(x)])

2
%

& '( )
variance

+Ex

$
(ED [hD(x)]− t)

2
%

& '( )
bias

Bagging with Generating Distribution Suppose we could sample m independent training sets {Di}mi=1 from pdataset. Learn
hi := hDi

and out final predictor is h = 1/m
#m

i=1 hi. Bias Unchanged: E
D1,...,Dm

iid∼ pdataset
[h(x)] = 1

m

#m
i=1 EDi∼pdataset

[hi(x)] =

ED∼pdataset
[hD(x)] Variance Reduced: VarD1,...,Dm [h(x)] = 1

m2

#m
i=1 Var [hi(x)] =

1
m Var [hD(x)]

Bootstrap Aggregation Take a single dataset D with n sample and generate m new datasets, each by sampling n training examples
from D, with replacement. We then the average the predictions. We have the reduction in variance to be Var

*
1
m

#m
i=1 hi(x)

+
=

1
m (1− ρ)σ2 + ρσ2

Random Forest Upon bootstrap aggregation, for each bag we choose a random set of features to make the trees grow on (decorrelates
predictions, lower ρ).

Bayes Optimality Ex,D,t|x

$
(hD(x)− t)

2
%
= Ex

$
(ED [hD(x)]− y∗(x))

2
%

& '( )
bias

+Ex,D

$
(hD(x)− ED [hD(x)])

2
%

& '( )
variance

+Ex[Var[t|x]]& '( )
Bayes

Feature Mapping Some time we want fit a polynomial curve, we can do this using a feature map y = w⊤ψ(x) where ψ(x) =,
1, x, x2, . . .

-⊤
. In general the feature map could be anything.

Ridge Regression wRidge
λ = argmin

w
Jreg(w) = argmin

w

1
2‖Xw − t‖22 + λ

2 ‖w‖22 =
*
XTX+ λI

+−1
XT t When λ = 0 this is just OLS.

Gradient Descent Consider the some cost function J and we want to optimize it.

• GD: w ← w − α∂J
∂w ; GD w/ Reg w ← w − α

*
∂J
∂w + λ∂R

∂w

+
= (1− αλ)w − α∂J

∂w

• mSGD: Choose mini batch M ⊂ {1, ..., N} and update w ← w − α
|M|

#|M|
i=1

∂L(i)

∂w Reasonable size would be |M| ≈ 100

• SGD: Choose i at uniform; w ← w − α∂L(i)

∂w ; Pro//Cons: Progress w/o seeing all data//High Variance & Not efficiently
vectorized

Cross Entropy Loss LCE = −t log y− (1− t) log(1− y) Logistic CE LLCE(z, t) = LCE(σ(z), t) = t log(1+ e−z)+ (1− t) log(1+ ez)

Multi-class Classification

• Softmax Function Natural generalization of logistic func: yk = softmax (z1, . . . , zK)k = ezk!
k′ e

z
k′ ; iuputs zk are called logits.

• CE Loss, Vectorized LCE(y, t) = −
#K

k=1 tk log yk = −t⊤(logy) where the log is applied elementwise.

• Softmax Regression z = Wx+b, y = softmax(z), and LCE = −t⊤(logy); GD Updates is wk ← wk−α 1
N

#N
i=1

.
y
(i)
k − t

(i)
k

/
x(i)

where wk means the k-th row of W

Activation Functions Identity y = z ReLU y = max(0, z) Soft ReLU y = log(1 + ez) Thresholding y = 1 if z > 0 else 0.

Logistic y = 1
1+e−z tanh y = ez−e−z

ez+e−z

Multilayer Perceptron

• Modularity of Layers h(1) = f (1)(x) = φ
*
W(1)x+ b(1)

+
, h(2) = f (2)

*
h(1)

+
= φ

*
W(2)h(1) + b(2)

+
, . . . , y = f (L)

*
h(L−1)

+
=

f (L) ◦ · · · ◦ f (1)(x)

• Choice of Last Layer Activation Func Regression: y = f (L)
*
h(L−1)

+
=

*
w(L)

+T
h(L−1) + b(L); Binary Classification: y =

f (L)
*
h(L−1)

+
= σ

.*
w(L)

+T
h(L−1) + b(L)

/

• Back Propagation Suppose L what I want to optimize, then for some variable w that we want to optimize w.r.t., ∂L
∂w =: w

• Back Prop Cost Forward: one add-multiplicity operation per weight; Backward: two add-multiplicity operations per weight
=⇒ the Backward pass is about as expensive as two Forward passes. (cost is linear in # of layers, quadratic in # of units per
layer)
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Statistic on Samples

• Sample Mean µ̂ = 1
N

#N
i=1 x

(i). µ̂ roughly quantifies where your data is located in space

• Sample Cov Σ̂ = 1
N

#N
i=1

*
x(i) − µ̂

+ *
x(i) − µ̂

+⊤
quantifies the shape of spread of the data

Euclidean projection Let S denote the subspace with dim = k that is spanned by the basis {u1, ...,uK} ⊆ RD. Then,

• Any vector y ∈ S could be represented as y =
#K

i=1 ziui, for some z1, ..., zk ∈ R
• The projection of x onto S is given as ProjS(x) =

#K
i=1(x

⊤ui)ui =
#K

i=1 ziui where zi = x⊤ui

Principle Component Analysis - Projection onto Subspace

• Let {uk}Kk=1 be an orthonormal basis of the subspace S.
• Define U to be a matrix with columns {uk}Kk=1 then z = UT (x− µ̂). Here the z is called the code vector
• Also, x̃ = µ̂+Uz = µ̂+UUT (x− µ̂) is called the reconstruction of x
• Note: UUT is the projector matrix and UTU = I is the identity matrix.
• x and x̃ are both in RD while x̃ lives in a low dimensional subspace in RD. The code vector x is in RK , and is the low dim
representation of the vector x

PCA - Learning Subspace

• Criteria I:Minimize the reconstruction error: Find vectors in a subspace that are closest to data points, minU
1
N

#N
i=1

00x(i) − x̃(i)
002

• Criteria II:Maximize the variance of reconstructions: Find subspaces where data has the most variability, maxU
1
N

#
i

00x̃(i) − µ̂
002

• Proof: Criteria I ≡ Criteria II; It suffices to show that 1
N

#N
i=1

00x(i) − x̃(i)
002 = const − 1

N

#
i

00x̃(i) − µ̂
002

Support Vector Machines

• Hinge Loss is defined as Lz,t := max{0, 1− zt}, where z := wTx+ b and t is the target

• Formulation minimizew,b

#N
i=1 max{0, 1− t(i)z(i)(w, b)}

• L2 - Regularized minimizew,b

#N
i=1 max{0, 1− t(i)z(i)(w, b)}+ λ

2 ‖w‖22
• Optimal Separating Hyperplane A hyperplane that separate two classes and maximizes the distance to the closest point from
either class, i.e., maximizes the margin (C = 1

‖w‖2
) of the classifier.

• Note: A separating hyperplane is optimal iff it touches three data points near the margin.

AdaBoost Key Concepts

• Boosting: Train classifier sequentially, each time focusing on training data points that were previously misclassified.
• Weighted Training Set: The weighted misclassification rate is

#N
i=1 w

(n)I(h(x(n) ∕= t(n))) where w(n) > 0 and
#

n w
(n) = 1

• Weak Learner (Informal): Weak learners are algorithms that output slightly better than chance
• Efficient Weak Learners: We are interested in weak learners that are computationally efficient, for example decision trees, or
even decision stumps (decision trees with only one split)

• Weak Classifier: The error of classifier h according to the given weights {w(1), ..., w(N)} is err :=
#N

n=1 w
(n)I(h(x(n) ∕= t(n))) <

1
2 − γ for some γ > 0 (“better than chance”)

• Reduced Bias AdaBoost reduces bias by making each classifier focus on previous mistakes.

AdaBoost Workflow

1. At each iteration we re-weight the training samples by assigning larger weights to samples (data points) that were classified
incorrectly.

2. We train a new weak classifier based on the re-weighted samples
3. We add this weak classifier to the ensemble of weak classifiers. This ensemble is our new classifier.
4. Repeat

AdaBoost Algorithm

• Input data DN = {x(n), t(n)}Nn=1 where t(n) ∈ {−1, 1}
• A classifier (hypothesis h : x → {−1, 1}), and 0-1 loss I[h(x(n)) ∕= t(n)] := 1

2 (1− h(xn) · t(n))
• A classification procedure that returns a classifier h, e.g. best decision stump from a set of classifier H, e.g. all possible decision
stumps)

• Output a master classifier H(x)
• For t = 1, ..., T (T is the number of iteration)

1. Fit a classifier to data using weighted samples ht ← WeakLearn(DN ,w). For example we can use

ht ← argmin
h∈H

N1

n=1

w(n)I{h(x(n) ∕= t(n)}

2. Compute the weighted error

errt =

#N
n=1 w

(n)I
!
ht

*
x(n)

+
∕= t(n)

"
#N

n=1 w
(n)

3. Compute classifier coefficient
αt =

1

2
log

1− errt
errt

(∈ (0,∞))
4. Update data weights

w(n) ← w(n) exp
.
−αtt

(n)ht

.
x(n)

// $
≡ w(n) exp

.
2αtI

2
ht

.
x(n)

/
∕= t(n)

3/%

• Return H(x) = sign
.#T

t=1 αtht(x)
/
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AdaBoost Weighting Intuition

• H(x) = sign
.#T

t=1 αtht(x)
/

where αt =
1
2 log

1−errt
errt

is “how much you trust weak learner t”.

• Weak classifiers which get lower weighted error get more weight in the final classifier. When some errt is small, αt =
1
2 log

1−errt
errt

is large in the final classifier.
• Also in weight updates, w(n) ← w(n) exp

*
2αtI

!
ht

*
x(n)

+
∕= t(n)

"+
. If errt ≈ 0 then, αt hight so misclassified examples get more

attention. Else If errt ≈ 0.5 then αt low hence misclassified examples not emphasized.

AdaBoost Geometric Convergence and Generalization Errors

• Theorem: Assume that at each iteration of AdaBoost the WeakLearn returns a hypothesis with error errt < 1
2 − γ for all

t = 1, ..., T with γ > 0. The trainning error of the output hypothesis H(x) = sign
.#T

t=1 αtht(x)
/
is at most

LN (H) =
1

N

N1

i=1

I
2
H

.
x(i)

/
∕= t(i)

3
≤ exp

*
−2γ2T

+

under the simplifying assumption that each weak learner is γ > 0 better than a random predictor. The convergence is called
geometric convergence, very fast!

• Generalization Error: AdaBoost’s Training error converges to zero. In testing set, AdaBoost can overfit when we add too much
weak learners. However this doesn’t always happen. There are cases where the testing error keeps decreasing even when
training error is zero. WHY? This is because even when training error is zero, the margin (= sample distance to decision
boundary) is still improved by further boosting iterations.

Additive Models - AdaBoost Alternative View Point

• Consider hypothesis class H with H ∋ hi : x → {−1, 1} weak learners. Aka bases in this context.
• An additive model with m terms is given by Hm(x) =

#m
i=1 αihi(x) where (α1, ...,αm) ∈ Rm (generally αi ≥ 0 and

#
i αi = 1)

• Stage-wise Training of Additive Models

Initialize H0(x) = 0
For m = 1 up to T do

Compute m-th hypothesis hm = Hm−1 + αmhm, i.e. hm and αm assuming previous additive model Hm−1 is fixed

(hm,αm) ← argmin
h∈H,α

N1

i=1

L
.
Hm−1

.
x(i)

/
+ αh

.
x(i)

/
, t(i)

/
(1)

Add it to the additive model
Hm = Hm−1 + αmhm

• Additive Model with Exp Loss: Consider the Exponential Loss LE(z, t) := exp(−tz). Then, (1) becomes

(hm,αm) ← argmin
h∈H,α

N!

i=1

exp
"
−
#
Hm−1

"
x(i)

$
+ αh

"
x(i)

$%
t(i)

$
=

N!

i=1

exp
"
−Hm−1

"
x(i)

$
t(i) − αh

"
x(i)

$
t(i)

$

=

N!

i=1

exp
"
−Hm−1

"
x(i)

$
t(i)

$

& '( )
≜w

(m)
i

exp
"
−αh

"
x(i)

$
t(i)

$
=

N!

i=1

w
(m)
i exp

"
−αh

"
x(i)

$
t(i)

$

• h Optimized at: hm ← argmin
h∈H

*N
i=1 w

(m)
i exp

"
−αh

"
x(i)

$
t(i)

$
≡ argmin

h∈H

*N
i=1 w

(m)
i I

+
h
"
x(i)

$
∕= t(i)

,

• Weight Update Optimized at: w
(m+1)
i ← w

(m)
i exp

"
−αmhm

"
x(i)

$
t(i)

$

• Coefficient Optimized at: α = 1
2
log

"
1−errm
errm

$
where errm ≜

!N
i=1 w

(m)
i I{hm(x(i)) ∕=t(i)}
!N

i=1 w
(m)
i

Näıve Bayes

• Näıve Assumption: Näıve Bayes assumes that the features are conditionally independent given the class c, i.e. p(c, x1, ..., xD) =
p(c)p(x1|c)...p(xD|c). Benefit: This gives us a compact representation of the joint distribution. O(2D+1 − 1) → O(2D + 1)

• Bayes Rule p(c|x) = p(x,c)
p(x) = p(x|c)p(c)

p(x) Formally posterior = Class likelihood × prior
Evidence

• Näıve Bayes Inference p(c|x) = p(c)p(x|c)!
c′ p(c

′)p(x|c′) =
p(c)

"D
j=1 p(xj |c)!

c′ p(c
′)

"D
j=1 p(xj |c′)

Shorthand p(c|x) ∝ p(c)
4D

j=1 p (xj |c)
• Computational Cost of Näıve Bayes: (1) Training Time: estimate parameters using MLE, requires one pass in the data.
(2) Test Time: apply Baye’s Rule. Cheap because of the model structure.

Bayesian Parameter Estimation

• Posterior Distribution: p(θ|D) = p(θ)p(D|θ)#
p(θ′)p(D|θ′)dθ′

• Gamma As Prior: p(θ; a, b) = Γ(a+b)
Γ(a)Γ(b)θ

a−1(1− θ)b−1. Proportionality: p(θ; a, b) ∝ θa−1(1− θ)b−1

• Maximum A-posteriori Estimation: θ̂MAP = argmaxθ p(θ|D) = argmaxθ p(θ)p(D|θ) = argmaxθ log p(θ) + log p(D|θ)
Properties of Gaussian Distribution

• x ∼ N (µ,Σ) is defined as p(x) = 1
(2π)d/2|Σ|1/2 exp

,
− 1

2 (x− µ)TΣ−1(x− µ)
-

• Empirical Mean µ̂ = 1
N

#N
i=1 x

(i) Empirical Cov Σ̂ = 1
N

#N
i=1

*
x(i) − µ̂

+ *
x(i) − µ̂

+⊤
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

• Idea: Make decisions by comparing class posteriors. log p (tk|x) = log p (x|tk) + log p (tk)− log p(x)

• Expanded log p (tk|x) = −d
2 log(2π)−

1
2 log

55Σ−1
k

55− 1
2 (x− µk)

T
Σ−1

k (x− µk) + log p (tk)− log p(x)

• Decision Boundary: log p (tk|x) = log p (tl|x) =⇒ (x− µk)
T
Σ−1

k (x− µk) = (x− µℓ)
T
Σ−1

ℓ (x− µℓ) + Ck,l

Then, xTΣ−1
k x− 2µT

kΣ
−1
k x = xTΣ−1

ℓ x− 2µT
ℓ Σ

−1
ℓ x+ Ck,l

• Decision Boundary: is quadratic since gaussian is quadratic. When we have to humps that share the same covariance, the
decision boundary is linear.

• VS Logistic Regression (1) GDA is generative while LR is discriminative model. (2) GDAmakes stringer modelling assumptions:
assumes gaussian distributon. When assumption true, GDA asymptotically efficient. (3) LR more robust, less sensitive to incorrect
modelling assumptions (LR uses CE, no assumption.) (4) Class-conditional distributions usually lead to logistic classifier.
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